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Vectors Unit 1

Section Learning competencies
1.1 Representation | ® Define the term vector.
of vectors e (Give some examples of vector quantities.
(page 1) ® Represent vectors both analytically and graphically.

1.2 Addition and e Define the term resultant vector.
subtraction of Add two vectors together (including vectors in the same direction,
vectors opposite directions and at right angles to each other).

(page 3) e Determine the angle of a resultant vector.
® Use Pythagoras’s theorem to determine the size of the resultant vector.
® Resolve a vector into horizontal and vertical components.
¢ Find the direction and resultant of two or more vectors using the

component method.
1.3 Some ¢ Define the term equilibrium.

applications of | ® Explain the importance of forming a triangle of three vectors.

vectors e (arry out some experiments to investigate vectors.

(page 10)

Whenever you take a measurement of an object you are recording
a physical property of that object. Further physical properties

can then be calculated using these measurements. All physical
quantities are either scalar or vector quantities. This unit looks at
vectors in detail, including examples of vectors, how to add them
up and why they are used. Vectors are crucial in a wide range of
applications, from landing on the-Moon to crossing rivers and to
keeping bridges standing up!

1.1 Representation of vectors

By the end of this section you should be able to:
¢ Define the term vector.
® Give some examples of vector quantities.

e Represent vectors both analytically and graphically.

What are vectors?

If you were asked for directions to your house, simply saying

‘6 km away’ would not be very helpful. Instead you need to
provide more information. Along with the distance a direction is
also required. Saying ‘6 km due North from here’ provides much

Grade 9




UNIT 1: Vectors

KEY WORDS more information. You have provided a magnitude (6 km) and a
: — direction (North). Quantities that have both a size and a direction
scalar a quantity specified are referred to as vectors.

only by its magnitude
magnitude size

vector a quantity specified by
its magnitude and direction The alternative, a scalar quantity, just has magnitude (size) and
there is no direction associated with it. For-example, it would be
silly to say a chemical energy of 600 ] North! Energy is an example
of a scalar quantity.

Vectors are incredibly useful tools in both mathematics and physics.

* A vector quantity has both magnitude and direction.

All vector quantities have a direction associated with them. For
Think about this... example, a force of 6 N to the left; or a displacement of 45 km South.

Magnitude is a scientific

 d : Table 1.1 Some examples of vector-and scalar quantities
way of describing the size

of a quantity. For example, Vector quantities Scalar quantities

a velocity O.f 50 m/s North Forces (including weight) Distance

has a magnitude of 50 m/s.

Scalars are quantities that Displacement Speed

have a magnitude only. Velocity Mass
Acceleration Energy
Momentum Temperature

6N
How can we represent vectors?
550

As.all vectors have a direction, we must include one when writing
them down. For example, a displacement of 13 km would not be

Figure 1.1 An arrow representing  enough information. We must write 13 km South West.
a force of 6 N at about 55° to the

horizontal.

We usually represent vectors using arrows. The length of this
arrow represents the size of the quantity and the way it is pointing
A represents its direction.

Notice in Figure 1.2 that the 50 km vector is twice the size of the
25 km vector.

We often represent vector quantities in equations using bold type
v or with an arrow above the quantity. For example, to represent force
50 km North 25 km East : . = . . . -
we might write F or F. So an important equation like F = ma would
be written as F = ma or F= ma as both force and acceleration are
vector quantities.

Figure 1.2 Two different

displacement vectors, represented . .
Vectors and scalars should not be confused with SI units.

by arrows.
The International System of Units (SI) defines seven basic units of
DID YOU KNOW? measurement. These may be seen in Table 1.2 at the top of the next
page and all have very exact definitions. For example, the second
Vectors, as they are is defined as the duration of 9 192 631 770 periods of the radiation

understood today, first
appeared in a publication

called Vector Analysis by
the American J. W, Gibbs in All other SI units are derived from combining one or more these

1881. units. For example, the newton is the SI derived unit of force, 1 N is
equivalent to 1 kg m/s>

n Grade 9

corresponding to the transition between the two hyperfine levels of
the ground state of the caesium-133 atom!




UNIT 1: Vectors

Table 1.2 Some quantities, their units and whether they are vectors

Quantity SI Unit Vector or Scalar

Mass Kilogram (kg) |Scalar

Length Metre (m) Sometime scalar (distance) sometime vector (displacement)
Time Second (s) Scalar

Temperature Kelvin (K) Scalar

Amount Mole (mol) Scalar

Electric current Ampere (A) Vector

Luminous intensity | Candela (cd) |Scalar

In this section you have learnt that:

e All physical quantities are either vectors or scalars.

e Vector quantities have both a magnitude and a direction.
e \Vectors must include a direction.

e Arrows are used to represent vectors.

Review questions

1. Give four examples of vector quantities.

2. Explain how vectors differ from scalars. Give some examples.

3. Draw, to scale, three different sized forces acting in different
directions. Label them with their size and direction.

4. Abebe wants to lift a 10 N object from the ground. What is the

minimum force he needs to exert (include both the magnitude
and direction).

1.2 Addition and subtraction of vectors

By the end of this section you should be able to:
¢ Define the term resultant vector.

e Add two vectors together (including vectors in the same
direction, opposite directions and at right angles to each
other).

e Determine the angle of a resultant vector.

® Use Pythagoras’s theorem to determine the size of the
resultant vector.

® Resolve a vector into horizontal and vertical components.

® Find the direction and resultant of two or more vectors
using the component method.

Grade 9

Discussion activity

Come up with a list of at least
15 physical properties. Discuss
these with your partner and
decide if they are scalar or
vector quantities. Combine
your pairs to form groups of
six. Discuss any quantities you
are unsure of.

Choosing your own scales
draw arrows to represent
three vectors:

e 400 km North East

e 32 m/s at an angle of 60°
to the horizontal

e A force with a size
and direction of your
choosing. Include the
scale and then pass
this to your partner to
determine the size and

direction of the force.




UNIT 1: Vectors

40kg + 20kg = 60kg

Figure 1.3 An example of adding
scalars

KEY WORDS

parallel running in the same
direction at the same constant
distance apart as another line
or surface

perpendicular forming an
angle of 90 degrees with
another line or surface
parallelogram method

method of resolving multiple
vectors

resultant the result of
combining multiple vectors

How do we combine vectors?

Scalars are simple to add. For example, when a mass of 40 kg is
added to a mass of 20 kg the total mass is 60 kg.

However, vectors are a bit more complex. When adding two 4 N
forces it is possible to get a total of 8 N or 0N or even 5.7 N!

When you add two or more vectors together the overall vector is
called the resultant.

Combining parallel vectors

The directions of vectors are really important. If you want to add
two parallel vectors, for example forces of 6 N and 3 N, you could
get 9 N or 3N - as shown below.

Think about this...

How fast would you have
to run on this bus to have
a resultant velocity of

0 km/h?

Calculate the resultant
displacement for the
following:

e 10 km left, 20 km right,
30 km left

e 150 km North, 50 km
North, 250 km South

e 7 km East, 14 km West,
13 km West.

Figure 1.6 Adding different
parallel vectors (along aline)

S0N Resultant S0N
=0N

= _ =
6N + 3N = 9N

= — o
6N o+ 3N = 3N

Figure 1.4 Parallel vector additional (along a line). The resultant is
9 N if they are in the same direction but 3 N if the forces are in
opposite directions.

You could think of the 6 N as positive and the 3 N to the left as
negative (-3 N) as it is in the opposite direction. So:

6 N+-3N=3N

5 km/h 5 km/h 20 km/h
———

_______________________ A&

Figure 1.5 Velocity vectors on a bus

Thisapplies to all vectors. A real world example, this time dealing
with velocities, can be seen in Figure 1.5. If the bus is moving North
at 20 km/h and you get up and walk towards the front of the bus at
5 km/h your resultant velocity is given by:

y=20km/h + 5 km/h = 25 km/h North

If you then turn around and walk to the back of the bus your
velocity would be 15 km/h North.

Some other examples involving forces can be seen below.

50N
SON Resultant 30N Resultant SON
= 20 N right 100 N | = 1000 N right
b o]

Grade 9



UNIT 1: Vectors

If you have several parallel vectors, the resultant may be found by
adding all the vectors in the same direction and subtracting those
going in the opposite direction. This can be seen in Figure 1.6c¢.

Combining perpendicular vectors
But what if the vectors to be added are not parallel?

For example, think about a swimmer swimming from one river
bank to another. He swims across the river perpendicular to the
river bank at 2.0 m/s. However, the river is flowing parallel to the
river bank at 1.0 m/s. How can you find his resultant velocity?

One method is referred to as the parallelogram method. This
involves drawing the two vectors with the same starting point.
The two vectors must be drawn to a scale and are made to be the

sides of the parallelogram. The resultant will be the diagonal of the

parallelogram.

Worked example

1. Choose a scale of 5 cm to represent 1 m/s.

2. Draw the vectors to represent the different velocities of the
man starting at the same point.

3. Complete the parallelogram (which in the case of
perpendicular vectors is always a rectangle).

4. Draw the resultant vector diagonally across the
parallelogram, from A to C (this represents the resultant
velocity of the swimmer).

5. Measure the length of ACand  C B
convert into m/s. It should
be around 11.25 cm long, and
this is equivalent
to 2.25 m/s (using 1 m/s is 5
cm). The angle from the river
bank should be measured as
around 64°.

2.0 m/s

D 1.0m/s A

Figure 1.8 The resultant

velocity.

Pythagoras’s theorem

The square of the hypotenuse of a right-angled triangle is equal to
the sum of the squares on the other two sides.

Discussion activity

What are the advantages of the parallelogram method over using
mathematics to solve vector problems?

Grade 9

Discussion activity

What is your total
displacement during the
school day? You begin the day
by getting out of bed, and end
it by returning to bed.

flow of river

Figure 1.7 Obang going across

Baro River

Using the parallelogram
method, determine the
resultant vector in each case:

e 10 km left, 20 km up
e 150 km North, 50 km West
e 7 km East, 14 km North

a=b+c

o

Figure 1.9 A right-angled triangle

DID YOU KNOW?

Pythagoras (or to give him
his full name, Pythagoras of
Samos) was born in ancient
Greece around 570 BC.
That’s over 2500 years ago!




UNIT 1: Vectors

Think about this...

The opposite side is
so called because it is
opposite the angle.

sin 0 = opposite
hypotenuse

cos 6 = adjacent
hypotenuse

tan O = opposite

adjacent
opposite

adjacent hypotenuse
0

Figure 1.11 Terms used in
trigonometry

KEY WORDS

hypotenuse the side of a
right-angled triangle opposite
the right angle

opposite the side of a right-
angled triangle opposite the
angle being calculated

Pythagoras’s theorem
theorem for calculating the
angles and length of the sides
of a right-angled triangle
right angle an angle of 90
degrees

1.0 m/s
2.0m/s
resultant

Figure 1.10 The swimmer’s velocity vectors
shown as a right-angled triangle.

An alternative to the parallelogram method involves using
Pythagoras’s theorem to determine the size of the resultant vector.
Trigonometry can then be used to find its direction. This gives a
much more precise answer.

Looking again at the swimmer example, a quick sketch of the
vectors can be seen in Figure 1.10.

Because the vectors are perpendicular, they form a right-angled
triangle. The resultant is the hypotenuse, so using Pythagoras’s
theorem we get:

a? = b* + ¢ State principle or equation to be used (Pythagoras’s theorem)
resultant’ = 1.0+ 2.0% Substitute in known values

resultant® = 5.0 Solve for resultant’

resultant = V5.0 Rearrange for resultant (take square root) and solve
resultant = 2.24 m/s (to 3 sig fig) Clearly state the answer with unit

This method may beused for any two perpendicular vectors.
However, we are missing the direction - all vectors must include a
direction.

Trigonometry
Looking back at our simple diagram.

1.0 m/s

2.0m/s
resultant

river bank

Figure 1.12 The swimmer’s velocity vectors shown as a right-angled
triangle including the river bank.

Using trigonometry, we can determine angle 0. As we have the side
opposite the angle (1.0 m/s) and the side adjacent to the angle
(2.0 m/s) we should use:

opposite

tan 0 = State principle or equation to be used (trigonometry)

adjacent

Grade 9



UNIT 1: Vectors

1.0
tan 0 = 2—0 Substitute in known values

tan 6 = 0.5 Solve for tan 0

0 =tan' 0.5 Rearrange equation to make 0 the subject and solve

0 =26.6° Clearly state the answer with unit

This means the angle between the resultant velocity and the river
bank is given by 90° - 26.6° = 63.4°.

Both methods give nearly identical answers; the mathematical
method offers more precise values.

Table 1.3 Comparing mathematical and diagrammatic methods for
finding resultants

Parallelogram method | Mathematical method

Size 2.25 m/s 2.24m/s

Direction 64° 63.4°

If you have more than two perpendicular vectors you add up the
parallel ones first leaving you with two perpendicular vectors from
which you can determine the resultant.

Non-parallel and non-perpendicular vectors

So we can now add parallel vectors and perpendicular vectors,
but what if the two vectors to be added are not parallel or
perpendicular? An example of two forces can be seen below.

We could use the parallelogram method, as before. This can be
seen below, but notice that as the vectors are not perpendicular the
parallelogram is not a rectangle.

The size and the angle of the resultant could then be measured
directly. But what if we wanted to find a more precise, mathematical
answer?

Draw the two vectors from the same origin. A diagonal passing
through their origin describes their resultant.

Resolving vectors

In order to solve the problem mathematically we need to resolve
one of the vectors. Resolving means splitting one vector into two
component vectors (usually one horizontal and one vertical). These
components have the same effect as the original vector. This process
is almost the reverse of combining two perpendicular vectors. An
example can be seen on the next page in Figure 1.16; the 8.0 N force
can be resolved into two component vectors that when combined
have the same effect.

Grade 9

B —

These four vectors become two
T

Figure 1.13 Combining more
than two vectors

Figure 1.14 Non-parallel and
non-perpendicular vectors
(in this case forces)

Trigonometry

hypotenuse x sin 8 = opposite

hypotenuse x cos 0 = adjacent

Figure 1.15 Parallelogram
method for non-perpendicular
vectors

resolve to split a force or
vector into its horizontal and
vertical components




UNIT 1: Vectors

The component vectors form the sides of a right-angled triangle.
They make up the opposite and adjacent sides of the triangle. As we
know the size of the hypotenuse (in this case 8.0 N) and the angle
(in this case 60°) we can then use trigonometry to find their sizes.

»

opposite

adjacent

Figure 1.16 Components shown  Figure 1.17 Component vectors as a right-angled triangle
in blue

| horizontal
component

Figure 1.18 This is an example of where resolving forces may be
useful. Although the rope is at an angle it is only the horizontal
component that causes the box to move.

So working through we get:

* hypotenuse x sin 6 = opposite

* 8.0 N xsin'60° = 6.9 N, the vertical component

* hypotenuse x cos 8 = adjacent

* 8.0 N x cos 60° = 4.0 N, the horizontal component
How is this useful?

x » - ‘Wenow have three vectors to add together; instead of the 8 N
69N 40N 6.0N vector we have two components.

_ These can then be added to give 10.0 N horizontally and
Figure 1.19 Component vectors = ¢ 9 N vertically. Using Pythagoras and trigonometry, the size
to add and direction of the resultant can be calculated as before.

69N

100N

Figure 1.20 Solution: the resultant is 12.1 N at an angle of 34.6° from
the horizontal. Check it yourself!

n Grade 9




UNIT 1: Vectors

Activity 1.4: Resultant
forces

Mathematically determine
the resultant force if two
forces, A and B, act on an
object. Force A is 85 N and
is at an angle of 20° to the
horizontal. Force B is 125 N
and is at an angle of 60° to
the horizontal.

Figure 1.21 Vectors are really important to pilots in planning
their route.

This technique works for multiple vectors at different angles.
For example, adding two velocities (this could be the velocities
of an aircraft, one due to the direction it is moving the other due
to the wind). '

: Figure 1.22 Two vectors at
Each of these vectors could then be resolved into horizontal and different angles
vertical components. This would give you four vectors to combine.

These could then be added to give two perpendicular vectors.
Notice that the horizontal vectors are in different directions and so
should be subtracted. : - >

Finally you can use Pythagoras and trlgonometry to determlne the

size and direction of the resultant Figure 1.23 Four components

from the two vectors in Figure

1.22
Summary

In this section you have learnt that:
e The resultant is the sum of two or more vectors.
e When adding vectors their direction is very important.

¢ The parallelogram method is a quick and easy way to
determine the resultant vector.

¢ To add perpendicular vectors mathematically you use
Pythagoras’s theorem to find the size of the resultant and
trigonometry to determine its direction.

e Resolving a vector means splitting it into two components.

e Resolving vectors enables you to find the result for vectors
at different angles.

Grade 9 n




UNIT 1: Vectors

equilibrium a state of
balance where there are no
resulting forces acting on a
body

Review questions

1. Calculate the resultant force in each of the examples below.

10N

4

100 N
30N 50N 350'N
D — 200 N

& 10 N
a b c

4

Figure 1.24 Examples for Question 1

2. An aircraft is travelling due North with a velocity of
100 m/s. A strong wind blows from the West with a velocity of
25 m/s. Find the resultant velocity, using both the parallelogram
method and the mathematical method.

3. Find the resultant force in Figure 1.22. .

1.3 Some applications of vectors

By the end of this section you should be able to:
¢ Define the term equilibrium.

e Explain the importance of forming a triangle of three
vectors.

e C(Carry out some experiments to investigate vectors.

What does equilibrium mean?

As well as their importance in navigation (displacement and
velocity vectors), force vectors are incredibly important to all
buildings and structures. Often huge forces are involved but in

the case of a bridge or building there should be no resultant forces
acting. If there was, the bridge would move and perhaps topple over.

When there is no resultant force acting on an object it is said to be
in equilibrium.

This is easy to imagine in one dimension.

4 N 6N
—_— | ———
8N 6N
—_—) | ————

Figure 1.25 Forces in equilibrium

The sum of the forces to the left is 12 N. The sum of the forces to the
right is 12 N (you could say —12 N). Adding these together gives a

Grade 9



UNIT 1: Vectors

resultant of 0 N. This object is in equilibrium, there is no resultant
force acting on it.

In two dimensions this gets a little more difficult. If the vectors are
just perpendicular you add up the horizontal forces (those in the
x direction) and these should give a resultant force of zero. You
would then repeat the process for the vertical forces (those in the
y direction). If all the forces add up to zero then the object is in
equilibrium.

Scale diagrams

If the forces are not perpendicular then there are two techniques
you could use to check if the object is in equilibrium. The first
involves drawing a scale diagram.

To do this you simply:
* select a scale for your forces

* draw them to scale, one after the other (in any order), lining
them up head to tail ensuring the directions are correct.

If you end up where you started then all the forces cancel out
and there is no resultant force (Figure 1.26). However, if there is
a gap then there must be a resultant force and the object is not in
equilibrium (Figure 1.27).

Triangle of vectors

If there are only three forces acting, then the scale diagram will
always be a triangle if the object is in equlibrium.

¥
N

Figure 1.28 Triangle of vectors

Proving equilibrium mathematically

If you have several forces you can check they are in equilibrium
mathematically.

Take three forces below.
106 N

84 N

Grade 9

DID YOU KNOW?

When in equilibrium, all the
horizontal forces (those in
the x direction) must add
up to equal zero. This can be
written as:

ZF =0

2 means ‘sum of’. So this
literally means that the
sum of all the forces in the
x direction is zero.

The same is true for the
vertical forces (those in the
y direction). This can be
written as:

2 =]
y

.
\/

Figure 1.26 Scale diagram
showing no resultant force

Start/End

Figure 1.27 Scale diagram
showing a resultant force (the red
arrow)

Figure 1.29 Three forces, A, B

and C at different angles
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Each of these forces could then be resolved into horizontal and
vertical components. This would give six component vectors - three
vertical and three horizontal.

Discussion activity

If you had two forces could you work out the size and direction of
a third force required to keep the object in equilibrium?

(B) ©)
== === == :m_ ===
755 N
70.9 N
78.8 N 36.8 N 20N 46 N4
e -— -—

Figure 1.30 Six components from the three forces in Figure 1.29
Adding up the vertical vectors:

709N-755N+46 N=0N

Adding up the horizontal vectors:

788 N-36.8N-420N=0N

There is no resultant force so the object must be in equilibrium.
Be careful to ensure you add or subtract the vectors depending on
their direction.

You could repeat this technique for any number of forces! If the
components don't all cancel out then the object will not be in
equilibrium.

The box pulled by Chaltu, Biruk and Abrehet is in
equilibrium. This means that:

The sum of the forces exerted by Abrehet and Biruk
is equal to the force exerted by Chaltu

OR

The sum of the forces exerted by Biruk and Chaltu is
equal to the force exerted by Abrehet

OR

The sum of the forces exerted by Chaltu and Abrehet
is equal to the force exerted by Biruk.

Figure 1.31 Investigating vectors

Grade 9
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There are a number of experiments you could do to investigate
forces in equilibrium. Here is one example.

You are going to pull on a block of wood with two forces. You
will find the resultant of the two forces, and then check your
findings by vector addition.

¢ Find a suitable block of wood, and three forcemeters
(newtonmeters or spring balances). Place the block on a
sheet of plain paper.

e Attach two of the forcemeters (A and B) to one end of the
block, as shown in Figure 1.31. Attach the third (C) to the
opposite end.

e One person pulls on each forcemeter. A and B should be
at an angle of 90° to each other. C is in the opposite
direction. Pull the forcemeters so that their effects balance.

¢ On the paper, record the magnitudes and directions of the
three forces.

¢ Now find the resultant of forces A and B (either by scale
drawing or by calculation).

e Because force C balances forces A and B, it must be equal
and opposite to the resultant of A and B. Did you find this?

® Repeat the experiment with different forces at a different
angle.

You could repeat the experiment without one of the
forcemeters. You could then, either by scale diagram or
mathematically, determine the size and direction of the
unknown force.

Review questions

1. What is meant by the'term equilibrium?

2. Give three examples of objects in equilibrium found in the
classroom and draw an approximate scale diagram for the
object.

3. Three forces are acting on an object (Figure 1.32) which is in
equilibrium. Determine force A.

1400 N

Figure 1.32 Three forces, acting on a ship.

Grade 9
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In this section you have learnt that:

® An object is said to be in equilibrium when there are no
resultant forces acting on it.

e Scale diagrams can be used to determine whether or not an
object is in equilibrium.

e If there are three forces acting on an object in equilibrium
then when drawn they form a triangle.

¢ Using the component method you can mathematically
determine if an object is in equilibrium.

End of unit questions

1. Distinguish between a vector and a scalar quantity. Give four
examples of each. N i

o

State which of the following are vectors and which are scalars:
distance, mass, time, weight, volume, density, speed, velocity,
acceleration, force, temperature and energy.

w

A velocity of magnitude 40 m/s is directed at an angle of 40°
East of North. Draw a vector on paper to represent this velocity.

A car travels 3 km due North, then 5 km East. Represent
these displacements graphically and determine the resultant
displacement.

=~

b

Two forces, one of 12 N and another of 24 N, act on a body in
such a way that they make an angle of 90° with each other. Find
the resultant of the two forces.

&

Two cars A and B are moving along a straight road in the same
direction with velocities of 25 km/h and 40 km/h, respectively.
Find the velocity of car B relative to car A.

3

Calculate the component of a force of 200 N at a direction of
60° to the force.

Grade 9




Motion in a straight line [EILIAN

Section Learning competencies
2.1 Uniform motion | ® Describe the characteristics of uniform motion.
(page 16) ¢ Define the terms distance, displacement, speed and velocity.
e Explain the difference between distance and displacement.
¢ Distinguish between average and instantaneous speeds and velocities.
2.2 Uniformly e Define the term acceleration.
accelerated e Describe the meaning of the term uniformly accelerated motion.
motion e Explain the meaning of the unit m/s2.
(page 19) e Use velocity-time graphs to determine the acceleration of an object.
2.3 Graphical ® Describe the key features of distance-time and displacement-time
description of graphs.
uniformly e Use displacement-time graphs to determine the velocity of an object.
accelerated e Describe the key features of velocity-time graphs.
motion e Use velocity-time graphs to determine the acceleration of an object and
(page 22) the displacement.
2.4 Equations of e Describe the equations of uniformly accelerated motion.
uniformly e Use these equations to solve problems.
accelerated e Explain the importance of using the correct sign convention (+ or -)
motion when dealing with velocities and accelerations.
(page 28) ¢ Define the meaning of the term free fall.
e Apply the equations to solve problems relating to free fall.
2.5 Relative e Explain the meaning of the term reference point (or reference frame).
velocity in one | ® Describe the relative velocities of objects.
dimension ¢ (alculate the relative velocity of a body with respect to another body
(page 36) when moving in the same or in the opposite direction.

It is almost impossible to imagine yourself living in a world without
motion. Stand still, perfectly still; are you in motion? Yes you are...
the Earth is spinning at over 450 m/s and even more mind boggling,
it is travelling around the Sun with a speed of 30 000 m/s! You are
moving very fast.

Every physicist needs a detailed understanding of motion. From
catching a ball to driving a car, motion affects our daily lives. How
things move is an important aspect of physics.

This unit looks at how things move. You will learn techniques to
correctly describe the motion of objects, how to calculate how

a certain object will move and the fact that all motion is in fact
relative.

Grade 9




UNIT 2: Motion in a straight line

KEY WORDS

uniform motion the motion
of an object moving at a
steady speed in a straight line
displacement distance

moved in a particular
direction

Think about this...

If an object is travelling in
a circle at a steady speed
why is this not considered
to be uniform motion?

Using a map, design a
journey from one town

to another. By carefully
considering the route
determine the distance and
the displacement for the
journey.

Repeat, but this time make
the journey much larger!
Perhaps starting at Addis
Ababa and ending up in a
different continent.

Start/Finish

Figure 2.2 Displacement when
travelling.in.a circle

Discussion activity

What would the distance and
displacement be after half a
lap?

What about three and a half
laps?

2.1 Uniform motion

By the end of this section you should be able to:
e Describe the characteristics of uniform motion.

¢ Define the terms distance, displacement, speed and
velocity.

¢ Explain the difference between distance and displacement.

¢ Distinguish between average and instantaneous speeds and
velocities.

What is uniform motion?

In order to understand motion there are several key terms we need
to understand. Uniform motion refers to an object moving at a
steady speed in a straight line. If it is speeding up, slowing down or
changing its direction'then its motion is not uniform.

An example could be'a bus driving at.a steady 100 km/h along a
straight road. The bus’s motion is said to be uniform.

Distance and displacement

We have used the term displacement in the previous unit.
Displacement is a vector quantity and so it is very different from

distance.
A‘__ _______ ________JB

Figure 2.1 The difference between distance and displacement for a
journey

North

Imagine a person travels from A to B following the black line
(Figure 2.1). They would travel a distance of 32 km. This is how far
they have actually travelled.

However, their displacement (the dotted line) would only be 12 km
East. This is how far they have travelled in a particular direction (in
this case East).

A more extreme example could be athletes running around a
circular track. If they complete six laps, with each lap being 1.0 km,
then they would have travelled a distance of 6.0 km. However, as
they are back where they started, their displacement would be zero!

Each lap covers a distance of 1.0 km but the displacement after each
lap is zero.

Grade 9
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Speed and velocity

The differences between distance and displacement are even more
important when calculating average speed and average velocity.

_ distance travelled
average speed =

time taken

.. displacement
average velocity = —FE————

time taken

Speed is a scalar quantity whereas velocity is a vector quantity.
Therefore, velocity must always include a direction.

Using the journey in Figure 2.1 we can calculate the average speed
and the average velocity. Let’s assume it took 6 hours to complete
the journey.

distance travelled State principle or equation to be

d=
average spee time taken  wused (definition of average speed)

32km Substitute in known values and complete

average speed = =2
g€ 5P 6h calculation

average speed = 5.3 km/h Clearly state the answer with unit

No direction needs to be given because speed is a scalar quantity

displacement State principle or.equation to be

average velocity = used (definition of average velocity)

time taken

... 12 km, East Substitute in.known values and
average velocity = -~~~

6h complete calculation

average velocity = 2.0 km/h East Clearly state the answer with unit

The differences between average speed and average velocity can be
seen clearly in this simple calculation.

Average speed and velocity

It is very important to stress that these are averages. At different
times the person could have been travelling faster or slower than
their average speed. Think about a bus ride from one city to another
- the journey may be 200 km long and take four hours. This would
give an average speed of 50 km/h.

Looking at the journey in more detail we might find on the main
road that the bus travels at 100 km/h but in the city it may have to
travel much slower, perhaps 30 km/h. Also, being a bus, it has to
stop to pick people up! Its speed is then 0 km/h. The bus is very
rarely travelling at 50 km/h.

Average speeds and ‘average velocities are useful but they do leave
out a great deal of information about the nature of the journey.

Grade 9

Think about this...

If Deratu takes 15 minutes

to complete 12 laps on the
running track at Addis Ababa
Stadium, what is her average
speed if one lap is 450 m
long? What would her average
velocity be?

Figure 2.3 What speed and
velocity did Deratu achieve?

In small groups, use a metre
stick or travel wheel to
measure out a short (15 m)
course.

Draw a scale diagram of your
course.

Take turns to run, walk,
crawl (whatever you like!)
through the course making
sure to time your journey
each time.

Use your measurements

to determine your average
speed and average velocity
in each case.




UNIT 2: Motion in a straight line

KEY WORDS

instantaneous speed speed
at a given instant in time

instantaneous velocity
velocity at a given instant in
time

Instantaneous speed and velocity

As an alternative, the terms instantaneous speed and
instantaneous velocity are used. In the case of instantaneous
velocity, this refers to the velocity at any given instant in time (the
same is true for speed).

Instantaneous velocity is often changing. This might be due to the
object getting faster, getting slower or even changing direction. This
is because velocity is a vector quantity, so if the direction changes so
does the velocity. \

An extreme example of this is an object going around a circle at a
steady speed. Here the speed of the object is constant but its velocity
is always changing. :

If an object is travelling with uniform motion then the
instantaneous velocity (and speed) remains the same.

In this section you have learnt that:

¢ Uniform motion is when an object travels at constant speed
in a straight line.

¢ Distance is a scalar quantity, whereas displacement is a
vector quantity.

e Average speed = distance travelled / time taken.
® Average velocity = displacement / time taken.

e Instantaneous velocity is the velocity at any given instant
in time.

Review questions

1. Using examples, explain the difference between distance and

displacement.

2. 'The Earth is, on average, 150 million km from the Sun.
Calculate its average speed in orbit.

3. A runner jogs 12 km North then turns and runs 16 km East in

three hours.
a) What is his displacement?
b) Calculate his average speed.

c) Calculate his average velocity (including the direction).

Grade 9
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2.2 Uniformly accelerated motion

By the end of this section you should be able to:
e Define the term acceleration.

¢ Describe the meaning of the term uniformly accelerated
motion.

e Explain the meaning of the unit m/s.

e Use velocity-time graphs to determine the acceleration of
an object

acceleration the rate of

: -,
What is acceleration? change of velocity

The term acceleration has a very specific definition.
* Acceleration is the rate of change of velocity.

This means that whenever an object’s velocity is changing it
is accelerating. The faster the velocity changes, the greater the
acceleration. Acceleration is the change in velocity per unit time.

It is important to note that it is a change in velocity not-a change in
speed. A change in velocity might be:

* getting faster
* getting slower
* changing direction.

It is possible to travel at a constant speed but with a changing
velocity. For example, any object moving at a steady speed in a circle
must be accelerating even though its speed is not changing. This is
because when an object moves in a circle:

* its direction changes.
¢ This means its velocity must be changing
* and if its velocity is changing it is accelerating. DID YOU KNOW?

The famous Ethiopian great
distance runner, Miruts
Yifter, was nicknamed the
“gear changer”. He used to
accelerate at the finishing
lap of 10 000 and 5000 m
races.

Figure 2.4 The Earth follows a near
perfect circular orbit. It travels

at a fairly steady speed of around
30 000 m/s but its velocity is always
changing.

Grade 9
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Figure 2.5 A car increases its
velocity as it accelerates.

The acceleration of an object depends on the forces acting on it
(more on this in unit 3).

If these forces don't change then the acceleration of the object
doesn’t change. Uniform acceleration refers to situations where
the acceleration of an object remains constant. This might be an
acceleration of 0 m/s? in which case the velocity of the object also
remains constant. Most real world situations involve changing
forces (most notably drag as objects get faster); this means the
acceleration of an object often changes as it gets faster.

What does 8 m/s? mean?
Acceleration has strange units.

Velocity is usually measured in m/s and as acceleration is the
change in velocity per second, acceleration is measured in m/s/s
or m/s’. :

An acceleration of 8 m/s*' means the object will be increasing its
velocity by 8 m/s everysingle second. So if it started from rest, then
after 1 second it would be travelling at 8 m/s, after 2 seconds at

16 m/s, after 3 second at 24 m/s, etc.

Alternatively, an acceleration of =9 m/s* means the velocity decreases
by 9 m/s every single second. Imagine an object initially travelling

at 45 m/s. It accelerates at -9 m/s? (or you could say decelerates at

9 m/s?). After one second it would be travelling at 36 m/s, after two
seconds at 27 m/s, after three seconds at 18 m/s, etc.

Acceleration calculations
To calculate acceleration we use:

change in velocity

average acceleration = e
time taken

For example, a car going from 10 m/s to 30 m/s in 4 seconds:

change in velocity State principle or equation
time taken to be used (definition of
average acceleration)

average acceleration =

average acceleration = (30 m/: — 10 m/s) Substitute in known values
S

20 m/s
4s

average acceleration = Complete calculation in brackets

average acceleration = 5 m/s*> Clearly state the answer with unit

It is a positive number as the car’s velocity is increasing from
10 m/s to 30 m/s. Its velocity increases by 5 m/s every second.

What about the same car braking to a stop? If it goes from 30 m/s to
0 m/s (stop) in 10 seconds, what is its acceleration?

. _ change in velocity State principle or equation
average acceleration = : .

time taken to be used (definition of
average acceleration)
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(0 m/ ISO_ 30 m/s) Substitute in known values
S

-30m/s

average acceleration =

average acceleration = Complete calculation in brackets

average acceleration = -3 m/s* Clearly state the answer with unit

It is a negative number because the car’s velocity is decreasing from
30 m/s to 0 m/s. Its velocity decreases by 3 m/s every second until it
comes to rest.

A more complex problem might involve calculating the original
velocity of an object.

For example, an aircraft accelerates at 10 m/s” for 15 s. Its final
velocity is 320 m/s. Find its initial velocity before it accelerated.

: change in velocity
average acceleration =

time taken
This can be rearranged to:
average acceleration x time taken = change in velocity
10 m/s* x 15 s = change in velocity
150 m/s = change in velocity

The final velocity is 320 m/s and the change in velocity is
150 m/s. To find the initial velocity we use:

initial velocity = final velocity - change in velocity
initial velocity = 320 m/s - 150 m/s

initial velocity = 170 m/s

In this section you have learnt that:
e Acceleration is defined as the rate of change of velocity.
¢ Acceleration is measure in m/s?.

e When an object is uniformly accelerated, its acceleration
remains constant.

Review questions

1. Define acceleration and state its units.

2. A car accelerates from'10 m/s to 28 m/s in 6 s. Find the average
acceleration. 4

3. An aircraft decelerates at 0.5 m/s” After 8 minutes its velocity
has dropped to 160 m/s. Find its initial velocity.

Grade 9
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2.3 Graphical description of uniformly accelerated
motion

By the end of this section you should be able to:

e Describe the key features of distance-time and
displacement-time graphs.

e Use displacement-time graphs to determine the velocity
of an object.

e Describe the key features of velocity-time graphs.

e Use velocity-time graphs to determine the acceleration
of an object and the displacement.

Motion graphs

Average velocities can only tell us a'certain amount of information.
If we need more detail then motion graphs are used. In order to
determine instantaneous velocities we ean plot displacement-time

graphs.

A graph is a useful way of showing how something has moved. To
draw a graph; we need information about an object’s displacement
at different times. Table 2.1 shows the displacement of a cyclist on
the way to school.

Table 2.1 Displacement of a cyclist

Displacement (m) | O 80 | 160 | 240 | 240 | 280

Time (s) 0 | 20 | 40 | 60 | 80 |100

A
displacement {m)

300

200

100

0 T T T T T T T T T T >
0 20 40 60 80 100

time (s)

Figure 2.6 Displacement-time graph for a cyclist

The information in the table has been used to draw the graph
(Figure 2.6). Note the axes of the graph have been carefully labelled
to show the quantity and unit:

H Grade 9
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. . . 3
* time in seconds on the x-axis displacement
* displacement in metres on the y-axis.

We can tell quite a lot from this graph.

At first, the graph is a straight line sloping upwards. The cyclist
went at a steady speed for the first 60 s.

* Then the graph is horizontal. The cyclist stopped for 20 s. >

time

¢ 'Then the graph slopes upwards again, but less steeply. During the Horizontal line

. Constant displacement
last 20 s, the cyclist moved more slowly than before. Velocity = 0

Figure 2.7 summarises how to interpret the shape of a X
displacement-time graph. You can see that the steeper the gradient  displacement

(slope) of the graph, the greater the velocity of the moving object. A A
curved graph indicates that the object’s velocity is changing.

Calculating velocity

From the displacement-time graph, we can work out an object’s

velocity (as explained in the worked example): >
time
* Velocity = gradient of displacement-time graph. Straight line, sloping upwards
Constant velocity

A has a greater velocity than B
Worked example

Y
displacement

3
displacement (m)

1000 (50,1000)

y

time

| (10, 200) Graph curving
I Velocity is changing
L L S e A B Figure 2.7 Different
time (s) displacement-time graphs

Figure 2.8 Displacment-time graph of a taxi
Figure 2.8 is a displacement-time graph for a moving taxi. Find
its velocity. Carefully sketch out a
Choose two points on the graph (they should not be too close distance-time graph for your
together). journey into school. Describe

each section of your graph

Draw horizontal and vertical lines to complete a right-angled .
with a partner.

triangle.

Calculate the displacement and time represented by these two
sides of the triangle:

displacement = 1000 m — 200 m = 800 m
time=50s-10s=40s
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Calculate velocity in the usual way:

displacement 800 m
time 40

So the taxi is travelling at 20 m/s.

velocity = =20 m/s

Distance-time and displacement-time graphs

Although the key features are the same, there is one big difference
between distance-time and displacement-time graphs.

As distance is a scalar quantity it only goes up and up. The distance
never goes down.

However, as displacement is a vector quantity it can also go down.
For example, if you walk 10 m away from'your friend heading
North and then stop you have travelled a distance of 10 m and your
displacement is 10 m North. However, if you then turn around and
walk 6 m back towards your friend you will have travelled 16 m but
your displacement would then be only 4 m North. This can be seen
in the two examples below.

20
18
16
14
£
=12 o
&
c 10 +
a8
o g4
)
0=
4 -
2
O T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Time /s
10
9_
8 =
Ehz.d
N
© O
Q
K 4]
*
A 34
2
1
O T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Time /s

Figure 2.9 Distance-time and displacement-time graphs for the same
journey.
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You can clearly see the displacement begin to fall as you head back
in the direction you came from. Eventually if you end up back

by your friend your displacement will be 0 m but you will have
travelled a distance of 20 m.

Gradient Nega.tlve

gradients
Distance-time graph Speed No
Displacement-time graph Velocity Yes

Table 2.2 A comparison between distance-time and displacement-
time graphs

This means you can get negative values from the gradient of a
displacement-time graph but not from a distance-time graph. This
makes sense if you think about it. You might get a negative velocity
of -4 m/s but negative speeds do not make any sense.

Velocity-time graphs

Just as a displacement-time graph shows how far an object has'moved,

a velocity-time graph shows how its velocity changes as it travels along.

Figure 2.10 shows an example; in this case, the motion‘of a car at the
start of its journey. We can deduce several points from the graph.

A

15 =

Velocity (m/s)
3

(4]
1

O T T -
0 20

o
W
o

Time.(s)
Figure 2.10 A velocity-time graph for a car.
At the start, the car was not moving,
* velocity = 0 when time = 0

The car accelerated at a steady rate during the first 10 s until it
reached a velocity of 15 m/s.

* the graph is-a straight line, sloping upwards
The car travelled at 15.m/s for 20 s.

* the graph is horizontal, so acceleration = 0
After 30 s, the car decelerated rapidly to a halt.
* graph slopes steeply down to velocity = 0

You can learn a lot from the shape of a velocity-time graph,

as shown in Figure 2.11. Take care! Do not confuse these with
displacement-time graphs. Always check the labels on the axes
before interpreting a graph.
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Velocity

\

Time
Horizontal line
Constant velocity
Acceleration = 0

A
A
>
3
5 B
>
Time ”

Straight line, sloping upwards
Constant acceleration
A has a greater acceleration than B

A

Velocity

Time %
Straight line, sloping downwards
Decelerating

Acceleration is negative

A

Velocity

\

Time
Graph curving
Acceleration is changing

Figure 2.11 Four velocity-time
graphs.

If the velocity-time graph is a straight line, the object’s acceleration
is constant, and we say that it is moving with uniform acceleration.

Calculating acceleration and displacement

We can calculate two quantities from a velocity-time graph. The
worked examples show how to do this.

* Acceleration is the gradient of a velocity—time graph.

* Displacement is the area under a velocity—~time graph.

Worked example

Figure 2.12 shows how the velocity of a train changed as it set
off from a station. Calculate its initial acceleration.
A

30 =} » ®

20 =1

Velogcity (m/s)

T T T
0 100 ; 200 300
Time (s)

Figure 2.12 Velocity-time graph for a train

¢ (Choose two points on the graph. As before, select points
that are far apart.

e Complete a right-angled triangle.

¢ (alculate the change in velocity and the time taken:
change in velocity = 25 m/s - 5 m/s = 20 m/s
time taken = 1255 - 255 =100 s

¢ C(alculate the acceleration:
acceleration = gradient of graph =

20 m/s
100 s

Calculate the distance travelled by the train during the first
300 s of its journey.
A

e e e N

= 0.2 m/s?

n
<]
1

Velocity (m/s)

S
1
Bt

L e ]

0

0 100 150 200 300
Time (s)

Figure 2.13 Finding the displacement of the train from its
velocity-time graph.
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Figure 2.13 shows the same graph as Figure 2.12; this time,
though, we have to calculate displacement, which is equal to
the area under the graph. The area is divided into two parts: a
triangle and a rectangle. (Area of triangle = %2 x base x height;
area of rectangle = base x height.)

uniform acceleration a
constant value of acceleration

displacement = area of triangle + area of rectangle Think about this

= (Y2 x 30 m/s x 150 5) + (30 m/s x 150 s) It is important to note that

= 2250 m + 4500 m the area under the line

— 6750 m may al§o t?e negative; ’Fhis
would indicate a negative
displacement. In this case
the line would dip under
the x-axis.

A velocity-time graph can tell the story of a journey. Here is
one driver’s description of a recent trip.

‘We crawled along through the city traffic at 6 m/s for

five minutes. Then we left the city, and we gradually
accelerated to 24 m/s in 20 s. We kept going at this speed for
two minutes, but then I noticed an accident on the road ahead
and I braked, so that we came to a halt in 8 s.

1 Draw a graph to represent this journey. (Remember, all the
times must be in seconds.)

2 From your graph, calculate the car’s acceleration and
deceleration.

3 Calculate the total distance travelled by the car. Now, make
up your own story and challenge a partner to draw the
graph and make the calculations.

In this section you have learnt that:

¢ Distance-time, displacement-time and velocity-time graphs
may be used to represent an object’s motion.

¢ The gradient of a displacement-time graph is equal to the
velocity of the object.

¢ The gradient of the line of a velocity-time graph is equal to
the acceleration.

¢ The area under the line of a velocity-time graph is equal to
the displacement.

o Acceleration is defined as the rate of change of velocity.

e Acceleration is measured in m/s2.
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Review questions

1. Draw a displacement-time graph for the following:

Displacement (m) |0 [20 (40 (40|80 |80 |60 |40 |0
Time (s) 0 [10 |20 [30{40 [50 [60 |70 |80

a) Explain the different sections of the graph in as much detail
as you can.

b) Use the graph to determine the maximum velocity.
c) Find the average velocity after 45's.
d) Find the instantaneous velocity at 45 s.

2. 'The following data were collected during a short race between
two friends.

Velocity (m/s) |0 0.5 |1 |1.5]2 |2 |4 |6 |2 |0
Time (s) 0|2 |46 |8 [10]12 |14 |16 |18

a) Describe the different sections of the graph.
b) Determine the acceleration over the first eight seconds.
¢) Determine the maximum acceleration.
d)  Using the graph calculate the displacement:
i) over the first eight seconds
ii) the total race.

e) Find the maximum velocity reached by the runner.

2.4 Equations of uniformly accelerated motion

By the end of this section you should be able to:
e Describe the equations of uniformly accelerated motion.
e Use these equations to solve problems.

e Explain the importance of using the correct sign convention
(+ or =) when dealing with velocities and accelerations.

¢ Define the meaning of the term free fall.

e Apply the equations to solve problems relating to free fall.

As discussed in Section 2.2, acceleration has a very specific
definition.

* Acceleration is the rate of change of velocity.
This can be written as:
average acceleration = change in velocity / time taken

If the acceleration is uniform (i.e. does not change) then the average
acceleration is the same as the acceleration during any given time.

n Grade 9
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So we could rewrite that equation as:
acceleration = change in velocity / time

But, only if the acceleration is constant.

To calculate change in velocity we could use the equation below:

change in velocity = final velocity - initial velocity
Or in symbols:
change in velocity = v - u
where
v = final velocity
u = initial velocity
This means our first equation could be written as:
a=w-u)t
where
v = final velocity
u = initial velocity
a = acceleration
t=time
This first equation is usually written as
v=u+at (1)

For example, if a car is travelling at 8 m/s and accelerates with
uniform acceleration at 2 m/s? for 6 s its final velocity will be:

v =u+ at State principle or equation to be used

v=8m/s + (2 m/s* X 6's) Substitute in known values and complete

calculation
v =20m/s Clearly state the answer with unit

This equation is often referred to as the first equation of the

equations of uniformly accelerated motion; there are four more.

Remember, this only applies if the acceleration is constant.
The second equation comes from the definition of velocity:
Velocity is the rate of change of displacement

This can be written as:

average velocity = displacement / time

If the acceleration is uniform then the average velocity can be found

by:

average velocity = (final velocity + initial velocity) / 2
So the equation becomes:

(initial velocity + final velocity) / 2 = displacement / time
Or in symbols

(u+v)/2=s/t

Grade 9

DID YOU KNOW?

The Greek symbol delta A
is often used to represent
‘change in’ So the formula
for acceleration could be
written as a = Av/ t.

Think about this...

To help confusing v and

u, remember that u comes
before v in the alphabet and
so u is the initial velocity, the
velocity before v!
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Using algebra, derive the
three remaining equations
from the two equations
given opposite.

Symbols used in the
equations

s = displacement
v = final velocity
u = initial velocity
a = acceleration

t = time

DID YOU KNOW?

These equations are often
referred to as the SUVAT
equations. But don’t forget,
they only apply if the
acceleration of the object is
uniform (constant).

where
s = displacement
v = final velocity
u = initial velocity
t=time

Rather confusingly, s if often used for displacement. Be careful not
to confuse this for speed!

This second equation is usually written as:
s=Bu+v)t (2)
This gives us two of the five equations:
v=u+at (1)
s=Bu+v)t (2)
Notice that these equations only use five quantities: s, u, v, a and .

The first one is missing s, the second one is missing a. The three
remaining equations are each missing one of the remaining
quantities. They are derived from the two above.

The complete set of equations in their usual form can be seen below:

v=u+at (1) (no s)
s=Y%(u+v)t (2) (no a)
s'=ut + Yat® (3) (nov)
v’ =1+ 2as (4) (no t)
s = vt - Yat’ (5) (no u)
time =0 time = ¢
initial velocity u acceleration a final velocity v

\/

AR

displacement s
Figure 2.14 The five quantities that appear in the equations of motion.

Using the equations

These equations can be used to solve a range of problems regarding
the motion of accelerating objects. There are lots of terms to use and
so to avoid confusion it is often a good idea to draw a quick table
like the one below:

Table 2.3 A table of motion quantities

s(m) |u(m/s) |v(m/s) |a(m/s?) |t(s)

Grade 9
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You can then fill in the quantities you know and this will help you
select the correct equation.

For example:

A cheetah accelerates at 3 m/s* for 5 s. If its final velocity is 24 m/s,
determine its initial velocity.

We can now fill in what we know.

s (m) u (m/s) |v(m/s) |a (m/s?) |t (s)
? 24 3 5

From the table you can see we don’t have s so we have to use
equation (1), the only one without s in it.

v =u+ at State principle or equation to be used
Rearranging to give u gives

u =v - at Rearrange equation to make u the subject

u=24m/s-(3m/s*x5s) Substitute in known values and complete ]

calculation
u=9m/s Clearly state the answer with unit

Here is another example. A runner in a race decides to accelerate

right up to the moment he crosses the line. He is initially travelling

at 5 m/s and accelerates at 0.4 m/s* for 5s. Find: "

i) The distance from the line when he decides to a.ccelerate.
ii) His final velocity as he crosses the line. ;

Again we can fill in what we know.

s (m) u (m/s) |v(m/s) |a (m/s?) |t (s)
? 5 0.4 5

From the table you can see we dor_i’-t';have v so'we have to use
equation (3), the only one without v in it.

s = ut + %ar State principle or equation to be used

s=(5m/sx5s)+ % x0.4m/s> x (5s)* Substitute in known values
", \and complete calculation

s=30m Clearly state'the answer with.unit
Adding this to the table we get.

s(m) |u(m/s) |v(m/s) |a (m/s2) |t (s)
30 5 ? 0.4 5

To find v we can use any equation apart from equation (5). Perhaps
the best one to useis equation (1) as this does not rely on the value
for s. You may have miscalculated this so it’s better to be safe and
use values you are certain of if at all possible.

v =u+ at State principle or equation to be used

v=5m/s + (0.4 m/s* x 5s) Substitute in known values and complete
calculation

v="7m/s Clearly state the answer with unit

Grade 9

Figure 2.15 Cheetahs are the
fastest land ‘animals, reaching
speeds of 120 kph!. . "

Figure 2.16 How fast does the
runner finish?
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Velociy . Velocity-time graphs for s = ut + %at?

/m/s

Equation (3) can be derived using ideas covered in section 2.3.

A velocity-time graph for an object with constant acceleration

v might look like the one in Figure 2.17. This might be a marble
rolling down an inclined ramp with the velocity measured at two
points along the ramp.

The gradient of the line is constant because the acceleration of the
object is constant.

Time/s
Figure 2.17 A typical velocity-
time graph

The total area under the graph represents the displacement of the
object between these two velocities (see Figure 2.18).

This area has two sections, shown as 1 and 2 in Figure 2:19.
Velocity
/m/s v

The area of the first section is simply u x t or ut. This added to the
second area will give the displacement.

The area of the triangle (Figure 2.20) is given by:
V(v -u) xt

From equation (1), v =u + at, it follows that v - u = at and so the
area can be expressed as:

Yhat X t or Yaat?

Timels The total area is given by the two areas added together. This gives:
Figure 2.18 The area under the

. . total area = ut + Ysat?
line represents the displacement of

the object. So, the total area is the same as the displacement:
y:l/gcity y s = ut + Yaat?

If the acceleration was zero the graph would be a horizontal line;
the area in this case would be just ut. In other words, %2at* would be
2 0. Equally, if the object started from rest then u would be 0 and the
graph would be just a triangle, in which case the area would be just
Yaat* as ut would be 0.

Positive or negative?

As both velocity and acceleration are vector quantities their
directions are very important. If the velocity is in the same direction
Figure 2.19 The area can be split ~_as the acceleration then both could be considered to be positive.

Time/s

into two sections. However, if they are in opposite directions then one must be

Velosty negative.

/m/s v

v < -
10 m/s
t
Time/s -

. 3m/s2
Figure 2.20 The area of the
triangle Figure 2.21 A car braking at traffic lights
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Asan example, Figure 2.21 shows a car approaching a set of traffic
lights. If the car has to stop, its velocity is in one direction but the
acceleration is in the opposite direction (since it is slowing down).
This would give us a velocity of 10 m/s and an acceleration of -3 m/s.

Imagine a ball rolling up a very long slope with an initial velocity of
6 m/s. The acceleration acts down the slope and has a value of

2 m/s” If we wanted to find the velocity of the ball after two seconds
we could use one of our equations of constant acceleration.

s (m) u (m/s) |v(m/s) |a(m/s?) |t(s)
6 ? 2 2

This table is wrong. We have both initial velocity and acceleration as
positive. This is not right as they are in opposite directions.

If we were to use v = u + at using these values we would get a final
velocity of 10 m/s. The ball has got faster as it has travelled up the
slope!

Instead if we decide to say the velocity up the slope is positive we
get

s(m) |u(m/s) |v(m/s) |a(m/s*) |t(s)
6 ? -2 2

The acceleration is -2 m/s? as we have decided that the positive
direction is up the slope.

v =u+ at State principle or equation to be used

v=6m/s+ (-2 m/s* x 2 s) Substitute in known values and complete
calculation

v =2m/s Clearly state the answer.with unit
This makes much more sense! The ball has got slower.

What about if we wanted the velocity after 10 s? Filling in the table
we would get:

s (m) u (m/s) |v(m/s) |a(m/s?) |t(s)
6 ? -2 10

The acceleration is -2 m/s? as we have decided that the positive
direction is up the slope.

v=u+ at State'principle or equation to be used

v=6m/s + (~2'm/s* x 10 s).-Substitute in known values and complete
calculation

v=-14m/s Clearly state the answer with unit

Our answer is —14 m/s. What does this mean? Because we decided
to make the direction up the slope positive, ~14 m/s must mean
the ball has gradually slowed down, stopped and then rolled back
down. After 10 s it is travelling down the slope at 14 m/s.

Grade 9

Think about this...

It does not really matter
which one is negative as long
as we think carefully about
our answers. Using the car
example it would be equally
valid to say the velocity is
-10 m/s and the acceleration
is 3 m/s2.

Figure 2.22 Ball rolling up a slope

Think about this...

We would have got the same
answer if we had made the
acceleration positive and
the initial velocity in the
negative direction. Except
our final answer would be
+14 m/s; indicating it is in
the same direction as the
acceleration.

Equally, using s = ut + %at?
we would get a displacement
of -40 m, meaning the ball
is 40 m lower down the slope
than when it started.
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Figure 2.23 Air resistance is very
important to parachutists!

DID YOU KNOW?

Technically, as the
definition of free fall does
not include any mention of
velocity (either magnitude
or direction), it also applies
to objects initially moving
upward. For example,

a small marble thrown
vertically up into the air is
undergoing free fall on both
the way up and the way
down!

Free fall

Free fall is a kind of motion where the acceleration of the object is
just due to the acceleration due to gravity. For this to take place we
must assume that air resistance (drag) is not acting on the object.
For most examples we are going to look at this as a fair assumption.
Air resistance only plays an important role if the object is moving
quite fast or has a very large surface area. However, there areplenty
of cases when we will need to consider air resistance in the future’
(for example, a parachutist!). g

Around 1590, there was a story about Galileo Galilei (1564-1642),
an Italian scientist. It is said he climbed up the Leaning Tower

of Pisa to test out his theory of free fall.: He dropped two'cannon
balls, one large one, one small one. Everyone watching thought the
larger one, that is the one with-more mass, would hit the ground
first. Instead they both hit the ground at the same time. Galileo had
realised that all objects dropped on Earth accelerate at the same
rate; it is only air resistance that slows them down.

When an object is undergoing free fall it will accelerate at 9.81 m/s%
this is the acceleration due to gravity on the surface of the Earth. It
is important to note that if we ignore air resistance then all objects,
regardless of their mass, will accelerate at this rate.

This is alittle counter-intuitive; our experiences work against us
when thinking about free fall. If you imagine a stone and a piece of
paper being dropped, it is obvious the stone will hit the ground first!
However, this is due to air resistance having a greater effect on the
piece of paper. Both the stone and paper initially accelerate at the
same rate.

On the Moon there is no atmosphere and so no air resistance. In
1971, American astronaut David Scott simultaneously dropped a
hammer and a feather from the same height to demonstrate free
fall. The hammer and the feather both fell exactly at the same rate
and so hit the ground at the same time!

If we ignore air resistance then the acceleration of all falling objects
can be considered to be uniform. We can then use the equations of
uniform acceleration to determine how long objects take to hit the

ground and what their final velocity is just before impact.

For example, imagine a ball dropped from a height of 4.0 m. How
long would it take to hit the ground?

s (m) u (m/s) v (m/s)
4.0 0.0
(as dropped)

a (m/s?)
9.81

t (s)

You can see we've used the initial velocity as 0 m/s, as the ball is
dropped, and the acceleration as 9.81 m/s.

Figure 2.24 The Leaning Tower
of Pisa
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Worked example

We don't know the final velocity of the ball so we must use

equation (3) (there is no v in this equation).

s =ut + %at? State principle or equation to be used

ut = 0, as the ball was dropped, so the equation becomes:

s = Yat?

This can rearranged to t = ¥2s/a Rearrange equation to make t
the subject

t=+(2 x 4.0 m)/9.81 m/s? Substitute in known values and
complete calculation

t = 0.9 s Clearly state the answer with unit
You can see from this that it does not matter what the mass

of the ball is. Any object dropped from 4 m will hit the ground
after 0.9 s if we ignore air resistance.

Using our equations of uniform acceleration we can also work out
the final vertical velocity. Looking back at the table we now have:

s(m)  |u(m/s) v (m/s) |a(m/s?) |t(s)
4.0 0.0 ¢ 9.81 0.9
(as dropped)

Worked example

We could use either equation (1), (2), (4) or (5) to determine
v. However, equation (4) does not rely on your calculation of
time, so this is preferable.

vZ = u? + 2as State principle or equation to be used
v =+ (u? + 2as) Rearrange equation to make v the subject

v=+(0%+ 2 x 9.81 m/s? x 4.0 m) Substitute in known values
and complete calculation

v =28.9 m/s Clearly state the answer with unit

The equations can also be used if the ball is thrown vertically
upwards. In this case it is the same process, but u is not 0 m/s and it
is very important to remember that u is in one direction and a is in
the other. One will have to be negative!

For example, we can use the equations to work out how long it
takes a ball thrown vertically with a velocity of 20 m/s to reach its
maximum height and how high it reaches.

Looking at the table we have:

s (m) u (m/s) v (m/s)
20 0

a (m/s?)
9.81

t(s)

At its maximum height, the velocity of the ball will be 0 m/s. To find
t we use equation (1).

Grade 9

Moon

Drop a ball from several
different heights and time
how long it takes to hit the
ground. Record your data
carefully and take repeats
for each height.

Using equation (3), calculate
the time it actually takes

to hit the ground. Compare
the actual times with your
readings and comment on
your findings.

DID YOU KNOW?

The acceleration due to
gravity varies all over the
globe. At sea level it ranges
between 9.79 m/s? and 9.83
m/s* depending on location.
It also changes with altitude
(although not by very
much). So we often use a
standard value of exactly
9.80665 m/s”.

gravity the force of attraction
between an object in the
Earth’s gravitational field and

the Earth itself
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Think about this...

If you drop an object, the
displacement before it hits
the ground is given by

s = Yat?. If you take a as

10 m/s? (close enough), this
becomes s = 5t* If it takes 1's
to hit the ground then it must
have fallen 5 m, 2 s means
20 m, etc. This is handy to
work out to approximate
height of bridges or depth of
wells. Just make sure nobody
is standing underneath!

Y
velocity

v =u + at State principle or equation to be used
t = (v - u)/a Rearrange equation to make t the subject

t=(0m/s - 20 m/s) / -9.81 m/s* Substitute in known values and
complete calculation

t=2.0 s Clearly state the answer with unit
A similar process gives s = 14 m. Try it for yourself!

An object in free fall produces very distinctive displacement-time
and velocity-time graphs. The displacement-time and velocity-time
graphs for an object in free fall can be seen in Figure 2.26.

e There are five equations that describe uniformly accelerated
motion; these can be used to solve a range of problems.

e The directions of the velocity and the acceleration of an
object are important when deciding whether they are
positive or negative values.

e When an object accelerates under gravity it is said to be in
free fall.

¢ The equations of uniform acceleration can be used to solve
problems relating to free fall.

y

time

Y
displacement

time

b

Figure 2.26 Motion graphs for
objects undergoing free fall

Review questions

I, What are the five equations that describe uniform accelerated
motion?

o

A bus accelerates from 10 m/s to 18 m/s over 3 s. Find:
a) The distance the bus covers whilst it is accelerating.

b) .. The acceleration of the bus.

W

A runner slows down after completing a race. Her deceleration
is 0.25 m/s?. After 5 s she is travelling at 4 m/s, determine her
initial velocity.

A stone is dropped off a tall building. It takes 5.3 s to hit the
ground. Determine the height of the building.

=

4

Explain what is meant by free fall.
2.5 Relative velocity in one dimension

By the end of this section you should be able to:

¢ Explain the meaning of the term reference frame (or
reference point).

e Describe the relative velocities of objects.

¢ (alculate the relative velocity of a body with respect to
another body when moving in the same or in the opposite
direction.

Grade 9
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It’s all relative!

Whenever we take measurements of displacement the answer
we give is always relative. One house might be 1.5 km away from
another or one object might be a certain distance from another.

The term reference frame (sometimes called reference point or

frame of reference) refers to measurements taken from a certain
point of view. Most of the measurements you will take are from

your own reference frame.

You might think this only applies to displacements, but it also
applies to velocities. If you are standing still and a car is approaching
you at 12 m/s you might think it has a velocity of 12 m/s in all
frames of reference, but you would be wrong. Now imagine you are
in a different frame of reference, moving in the same direction as
the car at 2 m/s. The car would appear to be moving towards you at
10 m/s. No longer 12 m/s!

The most common frame of reference is the Earth. When you stand
still you might think your velocity is zero. This is true in the Earth’s
frame of reference. However, if you could step off the Earth into
space you would see the Earth rotating and moving around the Sun.
So you would definitely be moving!

There are several different frames of reference. However; the laws
of motion governing a moving object (more on these in unit 3) are
only valid if the reference frame is either stationary relative to the
moving object or moving at constant velocity. This is often referred
to as an inertial frame of reference.

Relative velocity

As velocity is always measured from a reference frame this means
velocity is also always relative. Whenever you record the velocity of
an object the value of its velocityis relative to one frame of reference
or another. Velocity is usually measured from the Earth’s frame of
reference; an object is said to have zero velocity ifit is not moving
relative to the Earth. Equally 30 m/s usually means 30 m/s relative
to the Earth.

However, we also often measure velocities from the frame of
reference of an observer who is moving at a steady speed.

For example, imagine you are sat:on a moving bus and another bus
is overtaking you. From your frame of reference the overtaking bus
will appear to be moving quite slowly past the window. However,

if you were standing on the pavement, the overtaking bus will be
moving much faster relative to you.

The relative velocity between two objects can be thought of the
difference between their velocities (not their speeds, as the direction
is very important).

To calculate the relative velocities between moving objects we can
use the following equation:

VRab = Va N Vb

Grade 9

DID YOU KNOW?

One of the key ideas in
Einstein’s theory of special
relativity is that the speed of
light must be constant in all
reference frames. This leads
to some very strange effects,
including time slowing
down for objects moving
very, very fast!

reference frame a point
from which measurements are
taken
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For example, the relative velocity of two trains on parallel tracks.
- ; One train (a) is heading North at 30 m/s the other train (b) is
relative velocity the heading South at 20 m/s. In terms of vectors we could say:

difference between the
ff .. . y =30 m/s North and v. = 20 m/s South.
velocities of two moving a b

objects Train a ‘Train b

v,=30m/s _ v,=-20m/s
Figure 2.27 Two trains heading towards each other

As the trains are heading toward each other the driver of train a
would see train b approaching at 50.m/s.

vRab = va - vb

Ve, = 30 m/s — =20 m/s
Ve = D0 m/s

Also, the driver of train b would see train a approaching at 50 m/s!
The relative velocity between the two trains is 50 m/s. So if they
were 100 m apart it would take two seconds for the trains to pass
each other.

We can use the same process to calculate the relative velocity
between two athletes running along a long straight road. But this
time they are both travelling in the same direction.

The leading runner is travelling a 5 m/s but the athlete in second
place is sprinting to catch up. He is travelling at 7 m/s.

Athlete 2 Athlete 1

i

Figure 2.28 A travelling train

Think about this...

If two trains 18 km apart are
travelling towards each other,
one with a velocity of 35 m/s
and the other moving at

25 m/s, how long would it be
before the trains pass by each v,=7mls v,=5m/s
other?

Figure 2.29 Two athletes at the closing stages of a race

ﬂ Grade 9
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Ve, =V, — v, State principle or equation to be used (relative velocity
between 1 and 2)

Ve =D m/s— 7 mfs Substitute in known values and complete
calculation

Ve, =—2m/s Clearly state the answer with unit

Because we have calculated the velocity of the lead runner relative
to the second place runner we get -2 m/s. This means the leading
runner would see the second place runner approaching him at
2m/s.

If they are 20 m apart it would take the second place runner 10 s to
catch the leader (assuming they stay at the same speed).

5 km/h
e

5 km/h 20 km/h
e

Figure 2.30 Relative velocities of passengers on a bus

Review questions

1. Explain what is meant by the term reference frame.
2. Find the relative velocities of the following:

a) two cars travelling North on the same road, one travelling
at 15 m/s the other travelling at 20 m/s

b) two ships sailing down a river, one heading due East at
4 m/s the other sailing West at 2 m/s.

In this section you have learnt that:

e A frame of reference refers to a certain point of view
depending on the position and motion of the observer.

e The laws of motion only apply if the reference frame of the
observer is stationary or moving at a constant velocity.

¢ The velocity of an object depends on the frame of reference
of the observer.

¢ The relative velocity between one moving object and another
is given by the difference between their velocities.

Grade 9

Think about this...

This equation can be used if
one object is stationary. Here
the relative velocity is just
the velocity of the moving
object! If you are standing
on a platform and a train
approaches at 6 m/s, its
relative velocity is 6 m/s! But
also the train driver would
see you approaching at

6 m/s.

Activity 2.7: People on
the bus

Look at the three people on
the bus in Figure 2.30. What
are the relative velocities
between each of them? What
about the relative velocity
between the three on the
bus and a passenger waiting
at the next bus stop?
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End of unit questions

1.

How long will a bus take to travel 150 km at an average speed of
40 km/h?

A cheetah can run at 30 m/s, but only for about 12 s. How far
will it run in that time?

It takes a cheetah just 3 s to reach its top speed of 30 m/s:
What is its acceleration?

Table 2.4 shows how the displacement of a runner changed
during a sprint race. Draw a displacement time graph to show
this data, and use it to deduce the runner’s speed in'the middle
of the race.

Table 2.4 Data for a sprinter during a race

Displacement | 0 4 10 | 20 50 80 | 105
(m)

Time (s) 0 1 2 3 6 9 12

velocity 5.

time

Figure 2.31 Velocity-time
graphs for four cars.

Figure 2.31 shows how the velocity of four cars changed as they
travelled along a straight road. G1ve reasons for your answers to
these questions:

(a) ‘Which car was travelling at a steady speed?
(b). Which car was decelerating?
(c). Which car had the greatest acceleration?

Table 2.5 shows how the velocity of a car changed during part of
ajourney along a main road.

(a) Drawa velocity-time graph for the journey.
(b) Write a brief description of the journey.

(c). The car’s speed changed during two parts of the journey.
Calculate its acceleration at these times.

Table 2.5 Data for part of a car journey — see Question 6

Velocity 16 20 24 24 24 21 18
(m/s)

Time (s) 0 10 20 40 60 | 70 80
7. A taxiis travelling at 15 m/s. Its driver accelerates with

8.

acceleration 3 m/s” for 4 s. What is its new velocity?
A car accelerates from 20 m/s to 30 m/s in 10 s.
(a) Calculate the car’s acceleration using v = u + at.

(b) Draw a velocity—time graph to show the car’s motion. Find the
distance it travels by calculating the area under the graph.

(c) Check your answer by using the equation s = ut + %2at’.

Grade 9
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A truck gradually starts off from rest with a uniform
acceleration of 2 m/s’. It reaches a velocity of 16 m/s. Using the
equation v* = u* + 2as, calculate the distance it travels while it is
accelerating.

10. Table 2.6 shows values of the displacement and velocity of a

falling object. Copy and complete the table, and use it to draw
displacement-time and velocity—time graphs for the object.
(Take g= 10 m/s%)

Table 2.6 The motion of a falling object — see Question 10

Time t (s) 0 1 2 3 4
Displacement s (m)| 0 5 20

Velocity v (m/s) 0 10 20

11. A stone is dropped from the top of a 45 m high building. How

12.

13.

14.

15.

fast will it be moving when it reaches the ground? And what
will its velocity be?

Two cars A and B are moving along a straight road in the same
direction with velocities of 25 km/h and 40 km/h, respectively.
Find the velocity of car B relative to car A.

An aircraft heads North at 320 km/h relative to the wind. The
wind velocity is 80 km/h from the North. Find the velocity of
the aircraft relative to the ground.

Two aircraft P and Q are flying at the same speed, 300 m/s.
The direction along which P is flying is'at right angles to the
direction along which Q is flying. Find the magnitude of the
velocity of the aircraft P relative to aircraft Q.

A train travelling along a straight track starts from rest at point
A and accelerates uniformly to 20ms™ in 20s. It travels at
this speed for 605, then slows down uniformly to rest in 40s
at point C. It stays at rest at C for 305, then reverses direction,
accelerating uniformly to10ms™ in10s. It travels at this speed
for 305, then slows down uniformly to rest in 10s when it
reaches point B:
a Plot a graph of the motion of'the train.
b Use your graph to calculate:
i thetrains displacement from point A when it reaches
point C
ii the train’s displacement from point A when it reaches
point B
iii the trains-acceleration each time its speed changes.
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Forces and Newton’s

laws of motion

Learning competencies

Section

3.1

Forces in nature
(page 43)

List some of the forces that occur in nature and categorise them
as contact or non-contact.

State Newton’s first law.

Explain the relationship between mass and inertia.

State Hooke's law and distinguish between elastic and inelastic
materials.

Experimentally determine and describe the force constant of a
spring.

3.2 Newton’s second law

(page 52)

Distinguish between resultant force and equilibrant force.
Describe the effect of a force acting on a body.

Apply Newton’s second law (as F_, = ma) to solve problems.
Resolve forces into rectangular components and compose forces
acting on a body using component methods.

Describe the terms weight and weightlessness (including
distinguishing between weight and apparent weight).

Calculate the weight and apparent weight of an object in a range
of situations.

3.3

Frictional forces
(page 64)

Explain the causes of frictional forces.

Describe the differences between limiting friction, static friction
and kinetic friction.

Draw free body diagrams for objects on inclined planes (to include
frictional forces) and use these diagrams to solve problems.

3.4

Newton’s third law
(page 71)

State Newton’s third law.
Describe experiments to demonstrate it and give examples of
where it is applicable.

3.5

Conservation of
linear momentum

(page 74)

Define linear momentum and state its units.

State the law of conservation of momentum.

Define the term impulse and state its units.

Solve numerical problems relating to momentum, conservation of
momentum and impulse.

State Newton'’s second law in terms of momentum.

3.6

Collisions (page 83)

Distinguish between elastic and inelastic collisions.

3.7

The first condition
of equilibrium
(page 84)

State the conditions required for linear equilibrium.
Decide whether a system is in equilibrium.
Apply the first condition of equilibrium to solve problems.

Forces are all around us. From keeping us standing on the Earth, to
the Earth moving around the Sun. We experience forces every day
of our lives.

This unit looks at different types of forces, how they interact and

what effect they have on motion. This is a large topic encompassing
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UNIT 3: Forces and Newton's laws of motion

some of the most important work ever carried out by Physicists.
You will look into Newton’s laws, Hooke’s work on springs, and even
learn how to calculate your mass and weight on different planets.

3.1 Forces in nature

By the end of this section you should be able to:

e List some of the forces that occur in nature and categorise
them as contact or non-contact.

e State Newton'’s first law.

¢ Explain the relationship between mass and inertia.

e State Hooke's law and distinguish between elastic and
inelastic materials.

e Experimentally determine and describe the force constant of
a spring.

What are forces?

In simple terms, a force is a push or a pull. You might push a book
across the desk or gravity might pull objects towards the centre of
the Earth.

There are plenty of different examples of forces. However, if you
look deeper, forces fall into just four groups:

* Electromagnetic forces, dealing with charged objects, atomic
interactions and whenever objects come into contact.

* Gravity, which relates to all objects that have mass, from an apple
falling to the ground to the Earth orbiting the Sun.

1 ) oy Figure 3.2 Forces play an
* Finally, two forces dealing with interactions within the nucleus ir;g ortant role in ;c)eey ine atoms
of atoms. These are called the strong nuclear force and the weak ‘o glz ther ping

nuclear force. Although very important we rarely encounter
these forces in our day to day lives.

Below are some examples of common forces.

Table 3.1 Some examples of forces Categorise all the forces
listed in Table 3.1 as contact

Friction Drag forces (including air
. . or non-contact.
resistance and water resistance)
Electrostatic attraction or Thrust
repulsion
Buoyant force (upthrust) Gravitational attraction
Weight Tension
Contact force (reaction) Magnetic attraction or repulsion

All forces are vector quantities. This means they all have both a
magnitude and a direction, and are often represented in diagrams
as arrows. The size of the arrow represents the magnitude of the
force and the way it is pointing shows the direction it is acting. The
SI derived unit of force is the newton (N).

Figure 3.3 Forces pull stars

Figure 3.4 on the next page, is called a free body diagram. These together to form gigantic galaxies.

kinds of diagrams are really useful when dealing with forces. It
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UNIT 3: Forces and Newton's laws of motion

DID YOU KNOW?

All forces are measured in
newtons, named after Sir
Isaac Newton (more on him
later). He was born in 1642
and in his famous book
Principia Mathematica he
made significant advances
in understanding motion.
He also developed key
theories on gravity and
optics, and invented an
entire new branch of
mathematics: calculus.

KEY WORDS

pull movement towards a
force

push movement away from a
force

contact forces forces where
objects must touch before the
force has an effect

newton SI unit of force

non-contact forces

forces where objects are not
required to touch for the force
to have an effect

Figure 3.6 Despite being

150 million km away the Sun’s
gravity still has a significant
influence on the motion of the
Earth.

is important that you consider all the forces acting and draw the
arrows approximately to scale. In this case the weight of the stone is
greater than the air resistance.

Contact or non-contact

Forces can be categorised as either contact or non-contact. Some
forces act over a distance and so the objects'involved do not need to
be touching. Other forces need objects to touch before their effects
can be noticed. :

If you push your hands together you can feel a contact force (this is
really an electrostatic repulsion between the electrons in the atoms
in your hands). The same is true when you kick a ball,

Air resistance

Weight of stone

\ force of foot on ball

Figure 3.5 Kicking a ball
demonstrates a contact force.

Figure 3.4 Forces acting on a
stone falling through the air

Several forces act over a distance, the most obvious being
gravitational attraction. The Earth is kept in orbit around the Sun
even though they are 150 million km apart!

It is not just gravity; magnetic forces can also act over distances, for
example, two magnets attracting each other.

S -

Figure 3.7 Magnets can attract or repel each other without being in
contact.

What effect do forces have?

The famous ancient Greek, Aristotle, did a great deal to help
develop the idea of science. However, he got forces all wrong! He
thought that forces were needed to make objects move, that is, there
cannot be any movement unless a force is acting.
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UNIT 3: Forces and Newton's laws of motion

This idea makes a lot of sense in our experience. If we push a block
along it will keep on moving, but if we stop pushing the block it will
slow down and stop. The problem is that on Earth whenever objects
are in motion there are other forces acting, namely weight, friction
and/or drag. These forces have an effect on the motion of the object.

It is true that forces and motion are linked but forces do not simply
make objects move.

It was not until the famous English physicist, Sir Isaac Newton,
came along, some 2000 years after Aristotle, that we developed a
more complete understanding of forces. Newton took some of the
ideas developed by Galileo and constructed three laws that describe
how motion and forces are related.

Figure 3.8 Aristotle developed
some excellent theories but his
ideas about forces were wrong!

Newtons first law of motion explains what eftect forces have on
objects. It states:

* An object will remain at rest or travelling at a constant
velocity unless acted upon by an external force.

This takes a bit of reading but what it means is that forces don’t
make objects move but they do make objects change the way they
are moving.

An object will remain at rest unless a force makes it start to move. It
will then continue to move at the same velocity until another force
slows it down. So using our block example from earlier, when we
stop pushing it the block slows down because friction is acting on it.
If there was no friction it would continue at the same velocity until
another force acted on it.

The use of the term velocity here is also important. It means an
object moving around a curve or in a circle must have a force acting
on it. Whenever an object moves in a circle its velocity is changing s A
(because velocity is a vector quantity).and so according to Newton's  Figure 3.9 Sir Isaac Newton —
first law there must be a force acting on it. perhaps the greatest physicist of
all time.

Newton’s first law means a force is always required to make an object:
* speed up

* slow down

* or change direction.

If an object is not doing any of these, then we can conclude there are . .
no overall forces acting on it. This might mean remaining stationary ~ 1nink about this...

but it also means travelling at a steady speed in a straight line. Newton’s first law means if
you were to throw a tennis
Mass and inertia ball in space, far away from

any stars and planets, it
would continue to travel at a
steady speed in a straight line
forever! (Well until it got near
This is referred to as the inertia of an object. It is defined as: another object and then its
gravity would start to have an
effect).

Newton’s first law means that objects have a tendency to resist any
changes to their motion. They will remain stationary or at constant
velocity unless a force acts on them.

* 'The property of an object to remain at rest or moving at a
steady speed in a straight line.
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UNIT 3: Forces and Newton's laws of motion

You may have experienced this on a bus or train. If you are standing
still and the vehicle moves you tend to fall backwards. This is
because as it moves your feet are pulled along due to friction, but
the rest of your body resists this change in motion; it wants to stay
at rest.

. ‘ . SR The same is true when the bus/train stops suddenly; you tend to fly
T BN forward’ You're not really flying forward, you just keep moving at

the same speed as the vehicle slows down:

.

ki’
Figure 3.10 With no friction or The inertia of an object depends on its mass. The greater the mass
air resistance to slow it down, a of the object, the greater its inertia.

ball thrown in space will travel at

i i ’ This is why it is easy to kick a small stone. Because it has a small
a steady speed in a straight line.

mass and so a small inertia, only a'small force is required to change
the motion of the stone. However; a large boulder has'a great deal
more mass. If you kicked a boulder chances are it wouldn’'t move
(and youd have a sore toe!). It has much more mass, so it has a
much greater inertia and a much larger force isrequired to change

its motion.
inertia the tendency of an
object to resist changes to its
motion Try these simple observations (Figure 3.12).

e Place a book on a cloth on a smooth table. Pull the cloth
quickly. The book remains at rest.

e Place a coin on a small card. Support the card on the edges
of a table so that its sides stick out. Hit the card firmly
with one finger. The coin stays where it is.

e Put some water in a bucket or can. Spin it around quickly,
in a vertical circle. Although the can is upside down at the
top of the circle, no water falls out.

table

pull

quickly small card

\

Figure 3.11 The greater the
mass the greater the inertia. The
large boulder has a much greater
inertia.

hit card firmly

DID YOU KNOW? Figure 3.12 Demonstrating inertia

Inertia comes from the
Latin word, “iners”, meaning
idle, or lazy. Newton used

) : Other effects of forces
this word to illustrate that

objects were lazy; they did If more than one force acts on an object it can also change the shape
not want to move unless a of the object. Two parallel equal and opposite forces can either
force was applied to them. stretch or compress an object.
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UNIT 3: Forces and Newton's laws of motion

Forces can also twist or bend an object if applied in different
directions.
Robert Hooke was another physicist working in London around the Two forces can compress an object

same time as Newton. He was investigating methods for making
more precise clocks. He was interested in the effect forces had on -— -
springs.

Two forces can stretch an object

Hooke used springs fixed at one end (this provided an upward
force) and applied a force to the bottom of the spring to stretch it
(this force is sometimes called the load).

Figure 3.13 Some possible effects”
of two equal and opposite forces

load a force applied to a
spring

extension the increase in
length of a spring

DID YOU KNOW?

Hooke is perhaps best
known for Hooke’s law (also
called the law of elasticity),

) i\ e !

‘ : - but like Newton he made
Figure 3.14 Robert Hooke was a  Figure 3.15 Applying a force to a several other valuable
great scientist and was a rival of ~ spring fixed at.one end causes it contributions. He is often
Isaac Newton. to extend. described as the father of

microscopy, making several
important discoveries.
Hooke also came up with
the term cell to describe the
basic unit of life.

Hooke found that the greater the force applied to the spring the
greater the extension. Not only that, he found that the extension
of the spring was directly proportional to the force applied. This is
often referred to as Hooke’s law.

This means when he applied twice the force the spring would
extend twice as far. Three times the force, the spring would extend
three times as far. :

Hooke’s experiments are easy to repeat in a lab. Figure 3.17 on the
next page, shows a simple experimental arrangement you could use
to test his findings.

Table 3.2 Some results from an experiment on stretching a spring

Force applied (N) |Length of spring (cm) |Extension (cm)
0 10.0 0.0
1 11.5 1.5
2 13.0 3.0
3 14.5 4.5
4 16.0 6.0 )
Figure 3.16 Some of Robert
> 18.5 8.5 Hooke’s original drawings of his
6 22.0 12.0 experiment
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UNIT 3: Forces and Newton's laws of motion

-

spring

weights > R

Figure 3.17 Investigating how
force affects the extension of a

spring

Think about this...

Extending twice as far does
not mean the spring is now
double its length. It just
means the extension is twice
the size. Take a spring 15 mm
long; if 2 N caused a 3 mm
extension then 4 N would
cause a 6 mm extension.
With a load of 4 N the spring
would be 21 mm long.

KEY WORDS

Hooke's Law the force
applied to a spring is directly
proportional to its extension
up to the elastic limit

directly proportional

a relationship where both
variables increase (or
decrease) at the same time

Plotting these results on a graph will produce one like that in Figure
3.18. With Hooke's law experiments it is not uncommon to see it the
other way around, with extension plotted against force applied, so
make sure you look carefully at the axis!

Any relationship that is directly proportional will produce a
straight line graph with the line going through the origin. However,
it is worth remembering it does not have tobe at 45°. Figure 3.19
shows three directly proportional relationships.

Looking at Figure 3.19, what is different about the springs to
produce different slopes? Some springs are stiffer than others. A
stiffer spring will not extend as far when a force is applied to it.
Looking at the graph, which is the stiffest spring?

If you answered spring A youd be correct. Spring C is the least stiff;
it is the easiest to extend. Let’s look at why; but this time just using
two springs instead of three.

Figure 3.20 shows the results collected for two different springs.
Spring A is stiffer than spring B.

Consider the same force applied to each spring - force F. You can
see from the second graph that this force causes spring B to extend
more than spring A. Therefore you can conclude that spring A is
stiffer than spring B.

Force/N
Force/N Spring A

Spring B

Spring C

Extension/m Extension/m

Figure 3.18 A graph showing that  Figure 3.19 Three directly

force is directly proportional to proportional relationships for
extension three different springs
Force/N Spring A Force/N Spring A
Spring B Spring B
Force F
Extension/m Extension A Extension B Extension/m

Figure 3.20 Results collected for two different springs
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UNIT 3: Forces and Newton's laws of motion

The spring constant is a measure of the stiffness of a spring. It is
given the symbol k. A stiff spring might have a spring constant of
1000 N/m and a less stiff spring might have a spring constant of 15
N/m.

You can determine the spring constant of any given spring by using
the force—extension graph.

The gradient of the line is equal to the spring constant. The steeper
the line, the higher the gradient, the greater the spring constant and
the stiffer the spring!

Using the data and graph below we can determine the spring
constant for the spring.

Table 3.3 Typical force and extension data

Force (N) |Extension (m)

0 0.00

1 0.05

2 0.10

3 0.15

4 0.20

5 0.25 Figure 3.23 Force-extension

6 0.30 graph using data from Table 3.3

4
Force/N / rise=6 N
3 /
2 /
1
step=0.30
0 Et===== ORI i YTy S ey v ey T
0.00 0.05 0:10 0.15 0.20 0.25 0.30 0.35

Extension/m

The gradient of the line = rise/step State principle or equation to be used
(determine the gradient of the line)

gradient =/6'N /0.3 m Substitute in-known values and complete
calculation

gradient = 20 N/m Clearly state the answer with unit
Therefore, k = 20 N/m. ‘Make clear the gradient is also equal to k

Spring balances

The relationship between force and extension is used to great effect
in spring balances. These are very simple devices designed to
measure forces. They are often used to determine the weight of an
object.

Grade 9

Think about this...

The spring constant of 15
N/m means you would need
to apply a force of 15 N to
extend the spring by 1 m. 30
N would cause an extension
of 2 m, etc. If k= 1000 N/m,
then 1000 N would be needed
to extend the spring by 1 m.
500 N would cause a 50 cm
extension, etc.

Force/N

Gradient=k

Extension/m

Figure 3.21 Using a force-
extension graph to determine the
spring constant

Figure 3.22 The springs used in
car suspension systems need to
have a high spring constant.

origin the point of
intersection of the axes of a

graph




UNIT 3: Forces and Newton's laws of motion

Figure 3.24 Two different
examples of spring balances

DID YOU KNOW?

Spring balances are often
called newtonmeters (or
forcemeters). That definitely
would not have pleased
Hooke! He and Newton
were scientific rivals and did
not get on at all well.

Think about this...

What would be different
about the spring constant of
a spring in a spring balance
used to weigh heavy objects?

KEY WORDS g

gradient the slope of a line
on a graph

spring balance device used
to measure force via the
extension of a spring

spring constant a measure of
the stiffness of a spring
stiffness the amount of
force required to stretch or
compress a spring

Spring balances work on the principle that the greater the force
applied the greater the extension. This means it is easy to construct
a simple scale and pointer next to the spring. When a force is
applied (e.g. the weight of an object) the spring will extend to a pre-
determined length.

Activity 3.3: Making a spring balance

You can make a spring balance of your own.
* You need a spring, and a container for the objects you are
going to weigh (Figure 3.25).

® You also need a scale, next to the spring. Make a cardboard
pointer, and attach it to the bottom of the spring, so that it
will move past the scale.

¢ First, you must calibrate the spring balance. Hang some
known loads on the meter. Mark their values on the scale.
Mark the scale in equal divisions.

® Now use your meter to weigh other objects.

<«— scale

container
for load

Figure 3.25 Making a spring balance

“Th elastic tm

If we keep on applying force will the spring keep extending forever?
Obviously at some point the spring will break, but before it does

it behaves slightly differently. It begins to stretch more easily and
eventually it will stretch so far that it will not return to its original

length when the force is removed.

Grade 9



UNIT 3: Forces and Newton's laws of motion

So far we have been dealing with what is called elastic deformation
of the spring. This happens when the force applied to the spring is
directly proportional to the extension and when you remove the
force the spring returns to its original length.

A spring will only stretch elastically up to a certain point. This point
is called the elastic limit. After this limit is reached the deformation
is said to be plastic.

Plastic deformation means that the force is no longer proportional
to the extension and when you remove the force the spring no
longer returns to its original length; it has been permanently
stretched.

The graph below shows you how to indentify the two different types
of deformation.

Force/N

Plastic region

E

Elastic region

Extension/m

Figure 3.26 Elastic and plastic deformation of a spring

E on the graph is the elastic limit. Below the elastic limit the
deformation is elastic. Above the elastic limit plastic deformation
occurs.

Hookes findings about springsled to the law of elasticity, which is
more commonly called Hooke’s law. This only applies if the spring is
below its elastic limit and so may be written as:

* The force applied is directly proportional to the extension of a
spring up to the elastic limit.

Different springs have different elastic limits depending on their
shape, thickness, material, etc. All materials have an elastic limit;
think about a wooden or plastic ruler. If you bend it a little bit it will
return to its original length. If you apply too much force it will bend
so far it snaps; you've gone beyond the elastic limit for the ruler.

Grade 9

DID YOU KNOW?

The shorthand way

of writing directly
proportional is to use this
symbol: . This means we
could write Hooke’s law as
F o Ax up to the elastic
limit.

KEY WORDS

calibrate to compare a
measuring device with a
known standard

elastic deformation where
the force applied is directly
proportional to the extension
and where the object will
return to its original length
when the force is removed

elastic limit the point up
to which a spring will stretch
elastically

plastic deformation where
the force applied is not
directly proportional to the
extension and where the
object will not return to its
original length when the force
is removed




UNIT 3: Forces and Newton's laws of motion

In this section you have learnt that:

Forces can either be classed as contact or non-contact.
Examples of forces include friction, drag, weight,
gravitational attraction and contact forces.

Newton's first law states: “An object will remain at rest or
travelling at a constant velocity unless acted upon by an
external force”.

Inertia is the tendency of an object to resist changes to its
motion. The greater the mass of an object the greater its
inertia.

Hooke's law states: “The force applied to a spring is directly
proportional to the extension of the spring up to the elastic
limit".

The stiffer the spring the greater the spring constant

(k; measured in N/m).

Elastic deformation means when forces are removed the
object will return to its original length. Plastic deformation
means when the forces are removed the object does not
return to its original length; it is permanently stretched.

Review questions

1.

Give some examples of forces and classify them as contact or
non-contact.

State Newton'’s first law and explain what it means.

Describe Hooke's law and define the following terms: elastic
deformation, elastic limit and plastic deformation.

Sketch two force vs. extension graphs, one for a stiff spring the
other for a much weaker spring.

3.2 Newton’s second law

By the end of this section you should be able to:

Distinguish between resultant force and equilibrant force.
Describe the effect of a force acting on a body.
Apply Newton’s second law (as F_, = ma) to solve problems.

Resolve forces into rectangular components and compose
forces acting on a body using component methods.

Describe the terms weight and weightlessness (including
distinguishing between weight and apparent weight).

Calculate the weight and apparent weight of an object in a
range of situations.
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What if more than one force is acting? KEY WORDS
There are often several forces acting on an object. As all forces are equilibrant force the force
vector quantities we can add them up using the techniques covered | required to cancel out the
in Unit 1. resultant force
The overall force acting on any object is referred to as the resultant resultanF force the over all
force. This is often called the net force or F . It is defined as: force acting on an object

* The vector produced when two or more forces act upon a
single object.

It is calculated by vector addition of the forces acting upon the
object.

For example, consider two forces A and B acting on an object. They
will produce a resultant force. In the two examples below forces A DID YOU KNOW?

B give ri Itant, f . 1o
and B give rise to a resultant, force C The equilibrant force for any

system is always equal in

B magnitude to the resultant
A c A : force but it acts in the
opposite direction. This just

cancels out the effect of the
resultant force. This can be
written as: Fnet =-

Object =

equilibrant

Figure 3.27 Different resultant forces acting on an object

If the forces are parallel it is easy to determine the resultant.vector.
However, if the forces are not parallel (as in Figure 3.28) we then
use scale diagrams, parallelogram rules or the mathematical
techniques covered in Unit 1 to determine the magnitude and
direction of the resultant force.

C
Figure 3.29 There are several
forces acting on an aircraft in
Figure 3.28 Non-parallel forces leading to a resultant force flight.
Sometimes it is helpful to know the equilibrant force. This is the - .

Forces Aand B

force you need to apply to a system to cancel out the resultant force.
This will result in there being no net force acting on an object.

—_—
Resultant force

Figure 3.30 An equilibrant force will cancel — __ ..
out the resultant force acting on an object. ~ Eauiliriant force Resultant force
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Worked example

Two forces are acting on a boat. One force
of 400 N is due to current in the river,
acting downstream. The other force due to
the propeller has a magnitude of 500 N and
acts at an angle of 50° to the river bank.
Determine the resultant force acting on the
boat.

Figure 3.31 Boat crossing a river

400 N

Figure 3.32 Two force vectors acting on the boat

We could determine the resultant force using
a scale diagram. However, on this occasion
we are going to find the resultant force
mathematically.

In order to determine the resultant force we
must first resolve the 500 N into horizontal
and vertical components using trigonometry.

e Vertical component:

sin 8 = opp / hyp State principle or equation
to be used (trigonometry)

hyp x sin @ = opp Rearrange to make the
opp side the subject

500 N x sin 50° = 383 N %. Substitute in

known values and complete calculation, then

clearly state the answer with unit

e Horizontal component:
cos 8 = adj / hyp State principle or equation
to be used (trigonometry)
hyp x sin @ = adj Rearrange to make the adj

side the subject

500 N x cos 50° = 321 N —. Substitute in
known values and complete calculation, then
clearly state the answer with unit

We can then add the horizontal forces to give
the resultant horizontal force.

e Resultant horizontal force:
net horizontal 321 N — + 400 N — Determine
the net horizontal force (note the directions)
Fot vorizomtat = 121 N == Clearly state the
answer with unit

We can then use Pythagoras’s theorem to
determine the magnitude of the resultant

force and trigonometry to determine the

direction.

e Magnitude of resultant force:

Fnet horizontal — 721N — Clearly state known
values
Fnet e = 383 N 1 Clearly state known values

F..=383N T + 721 N — Determine the net
force (note the
directions)

F .2 =383% + 721? Apply Pythagorass theorem

F .2 =1666530 SolveforF ?

F .= V666 530 Rearrange for resultant (take

square root) and solve

F .= 816 N Clearly state the answer with unit

¢ Direction of resultant force:
=721 N — Clearly state known
values
Fr ot vericat = 383 N 1 Clearly state known values
tan O = opp / adj State principle or equation
to be used (trigonometry)
0 = tan (opp / adj) Rearrange equation to
make 0 the subject
0 = tan? (721 / 383) Substitute in known
values and complete
calculation
0 = 62° Clearly state the answer with unit

net horizontal

This is the angle between the resultant and
the vertical component. The angle between
the resultant force and the river bank is
90°- 62° = 28°.
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721N
i In this situation the equilibrant force would
be 816 N acting in the opposite direction to
383 N the resultant force.
Resultant
0
River bank

Figure 3.33 Determining the resultant force

Forces and acceleration KEY WORDS
In the previous section we said: Newton’s first law means a force is trigonometry a type of
required to make an object: mathematics that deals with
. speed up the relationships between the

sides and angles of triangles

accelerating where an object
* change direction. is speeding up, slowing down
or changing direction

* slow down

If an object does any of these things we can say it is accelerating.
In other words, forces cause objects to accelerate, or' more precisely balanced .forces where the

if there is a resultant force acting on an object, then that object will forces acting on a body cqncel
accelerate. The forces are said to unbalanced. each other out and there is no
resultant force

inversely proportional

a relationship where one

' variable increases as the other
decreases and vice versa

If there are balanced forces acting on an object then there is no
resultant force and so the object will not accelerate.

= | ’
—r ) — unbalanced forces where the

\ ‘ forces acting on a body do
not cancel out and there is a
resultant force

Figure 3.34 Any object going
around a bend is accelerating;
the forces are unbalanced and so
there must be a resultant force
acting on it.

Newton’s second law relatesto the rate of change of momentum of
an object (more on this'later). He realised that whenever a resultant
force acts on an object it will accelerate and this acceleration takes
place in the same direction as the force. If you push an object to the
left it will accelerate towards the left.

Through careful experiment and investigation he also worked out
that if you double the resultant force then the acceleration of the
object will also double. In other words the force applied is directly
proportional to the acceleration (as long as everything else remains
constant).
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Figure 3.36 When you apply - /
the brakes on a bike a force is
generated in the opposite direction
to motion. You accelerate in this
direction and so slow down.

Figure 3.37 The greater the force
applied to the ball the greater its
acceleration.

He also determined that the acceleration of the object also depends
on the object’s mass. The greater the mass the greater the inertia,
and so the lower the acceleration. In fact if you double the mass
the acceleration will halve and vice versa. An object with a quarter
of the mass will accelerate at four times the rate if the same force is
applied. This relationship is called inversely propertional. As one
quantity doubles the other halves.

a a
—_— 5 —_—
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S M e M
05a
—>
2a
E ————
/ ) 2M
_2F F
M A e )
— ]

Figure 3.35 The effects of force and mass on acceleration

As long as the mass of the object remains constant then Newton’s
second law can be expressed as:

*. The acceleration of an object is directly proportional to the
resultant force acting on the object.

and

* 'This acceleration occurs in the direction of the resultant force.
(Remémbe_r, this only applies if the mass of the object is constant.)
This gives us:

Resultant force = mass of object x acceleration of object

Ft:ma

ne

" We can use this equation to determine the resultant force required

to make a car of mass 1200 kg accelerate at 2 m/s

Resultant force = mass of object x acceleration of object State
principle or equation to be used (Newton’s second law)

F ,=ma Simplify statement to symbols

n

F ,=1200 kg x 2 m/s* Substitute in known values and complete
calculation

F ,=2400 N Clearly state the answer with unit

We can use the equation to determine the acceleration of a soccer
ball if we know the applied resultant force. A footballer may strike a
ball of mass 400 g with a force of 200 N.
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F ,=ma State principle or equation to be used (Newtons second law)

n

a=F _ /m Rearrange equation to make a the subject

m =400 g, which is 0.4 kg Ensure all values are in SI units

a =200 N /0.4 kg Substitute in known values and complete calculation
a =500 m/s* Clearly state the answer with unit

This acceleration will be in the same direction as the resultant force.

F = ma with several forces

net
If several forces are acting on an object then in order to determine
its acceleration we must first determine the resultant force.

To determine the acceleration we would use F ,=ma.

F ,= ma State principle or equation to be used (Newtons second law)

ne

a=F | m Rearrange equation to make a the subject

The resultant force in Figure 3.38 is 30 N > Determine resultant by
simple calculation of net
force

a=30N/4.0kg Substitute in known values and complete calculation

a =7.5 m/s? to the right Clearly state the answer with unit

To determine the acceleration we would again use F | = ma. Except
in this case we must subtract the forces to determine the resultant
force.

F ,=ma State principle or equation to be used (Newtons second law)

n

a=F /m Rearrange equation to makea the subject
net

The resultant force in Figure 3.39 is 20 N > Determine resultant by
simple calculation of net
force '

* a=20N/2.0kg Substitute in known values'and complete
calculation

* a =10 m/s*in the direction of the 50 N force Clearly state the
answer with unit

This process can be repeated for forces at an angle and for problems
involving more than two forces.

If you know the acceleration of the object you can also determine
the magnitude and direction of the resultant forces. For example,
two people are pushing a 60 kg'trolley along. One applies a force of
40 N and the trolley accelerates at 2.0 m/s*. Determine the size of

the force applied by the other person.
F = ma State principle‘or equation to be used (Newtons second law)

net

F ,= 60 kg x 2 m/s* Substitute in known values and complete
calculation

F ,=120N Clearly state the answer with unit
The resultant force is 120 N.
F ,=F, + F, Express net force in terms of F and F,

n
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DID YOU KNOW?

Newton’s second law may be
used to define the newton
as the unit of force. Using

F ,=ma and making sure
the units are all correct
(force in N, mass in kg and
acceleration in m/s?), we
can say that a force 1 N is
the force required to give a
mass of 1 kg an acceleration
of 1 m/s>. Or 1 N is

equivalent to 1 kg m/s*

Figure 3.38 Two forces acting on
an object

Figure 3.39 Two forces acting on
an object in different directions

2.0 m/s?

—_—
40N
_——
?N
_—

Figure 3.40 Trolley being pushed
by two people
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30N

40N

80 kg

Figure 3.41 Two forces acting on
an object at right angles

KEY WORDS

mass a measure of the
quantity of matter

weight the force experienced
by an object due to the
gravitational pull of the Earth

DID YOU KNOW?

The kilogram is defined

as the same amount of
mass as the international
prototype kilogram. This is
a platinum-iridium block
held in Paris, France.

Figure 3.42 The international
prototype kilogram has a mass of
exactly one kilogram.

120 N =40 N + F, Substitute in known values and complete calculation
F,=80N > Clearly state the answer with unit

The same technique may be used to determine the acceleration of
an object with two forces acting on it at right angles. For example:

First we must determine the resultant force using Pythagoras’s
theorem.

a* =b* + ¢* State principle or equation to be used (Pythagoras’s theorem)
F ? =(40 N)’ + (30 N)* Substitute in known values

F _}?= 2500 Solvefor F ? then solvefor F, 'by taking square root

F _,=50N Clearly state the answer with/unit

Then using F = ma we get:

a=F | m Rearrange F = ma to make a the subject

a=50N/80kg Substitute in known values and complete calculation

a=0.63 m/s* Clearly state the answer with unit

Trigonometry should then be used to determine the direction of
this acceleration; this'is in the same direction as the result force (37°
to the horizontal - check it for yourself).

Mass and weight

Mass and weight are two terms that are frequently confused. We
often say we are going to weigh something and then record its mass
in kg!

We must make sure we'don’t muddle the two; they are very
different.

Mass is a scalar quantity and it is a measure of the quantity of

matter. The more mass the more stuff (the more matter). Remember
the ineria of an object depends on its mass, you can think of mass as
a measure of an object’s inertia. Mass is measured in kilograms (kg).

Weight is a force and so it’s a vector quantity, measured in newtons
(N). It is the force we experience due to the gravitational pull of the
Earth pulling on our mass. Weight is directed towards the centre of
the Earth.

We can calculate the weight of an object using:
¢ weight = mass x gravitational field strength
* w=mg

On the surface of the Earth the gravitational field strength is around
9.81 N/kg. We will use 10 N/kg in the following examples to make
the mathematics a little easier.

A person with a mass of 70 kg will have a weight of:
w = mg State principle or equation to be used

w =70 kg x 10 N/kg Substitute in known values and complete
calculation

Grade 9
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w =700 N (actually more like 687 N if we use g = 9.81 N/kg).

Clearly state the answer with unit

If the gravitational field strength changes then the weight of the
object will change but its mass will stay the same. The gravitational

field strength varies a little around the Earth. This is for two reasons.

Firstly the amount of mass between you and the centre of the Earth
changes depending on where you are. If there is a particularly
dense pocket of material underneath you this will increase the
gravitational field strength slightly. The reverse is also true, if there
is large pocket of gas or lower density material underneath you the
gravitational field strength will go down.

The distance from the centre of the Earth also affects g; it gets
smaller the further away from the centre of Earth you get. This
change is quite small, you need to move really far away before is
becomes noticeable. Even at the top of the tallest mountain g is still
around 9.8 N/kg.

Remember, only the weight of the object will change; its mass will
stay the same. This is also true if we consider different planets:
Taking our astronaut as an example, if he stands on the Moon

his mass is still 70 kg (there is still the same amount of matter).
However, on the Moon the gravitational field strength is much less
than that on Earth. This is because the Moon has much less mass
and so a weaker gravitational field. The value for ¢ on the moon is
just 1.6 N/kg.

His weight on the Moon would be:
w = mg State principle or equation to be used

w =70 kg x 1.6 N/kg Substitute in known values and complete
calculation

w =112 N Clearly state the answer with unit

l Weight=112 N

Figure 3.45 Astronaut on the Moon and in deep space

In deep space, far away from any planets and stars, the gravitational
field strength is pretty much zero. In this case his mass would still
be 70 kg. However, his weight would be 0 N; he is weightless.

Grade 9

Figure 3.:43 Weight pulls all
objects towards the centre of the
Earth.

*
Mass=70 kg
Mass=70 kg
*
*
*
*x
Weight=0 N

l Weight=700 N

Figure 3.44 Weight and mass

Think about this...

The value for gravitational
field strength is the same
value as the acceleration
due to gravity (9.81). This
can shown by considering an
object of mass m dropped
from a height above the
ground. From Newton'’s
second law we know the
acceleration will be equal to
a=F_/ m. Wealso know
the force accelerating the
object is the weight of the
object so we could write F__
= mg. Combining these two
equations gives us: a = mg /
m, the m’s cancel giving
a=g!
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DID YOU KNOW?

Slight variations in the
gravitational field strength
are used to look for oil and
gas deposits. Because the
oil and gas is less dense
than the surrounding rock
this causes a small dip the
gravitational field strength
above the deposit. This
dip may be detected with
sensitive equipment.

Figure 3.46 Astronauts on the Moon can carry very large packs due
to the Moon's weak gravity.

Figure 3.47 Astronauts in the
International Space Station are
not truly weightless.

True weightlessness and apparent
weightlessness

You are only truly weightless if the gravitational field strength
Contact force =700/ is zero. Even astronauts in orbit around the Earth are not truly

weightless. There is still a gravitational pull due to the Earth; they
still have a weight. So why do they float around?
Weight=700 N

When we are standing on the ground our weight pulls us vertically
downwards towards the centre of the Earth. We push down on the
Earth and the Earth pushes back up with a contact force. These two
forces cancel out so there is no resultant force (this is why we don't
accelerate towards the centre of the Earth; if the ground was not
Figure 3.48 Weight and contact  ‘there then we would!).

force cancel out

It is this contact force we feel. We don't notice the pull of gravity. If

you take this contact force away by jumping off a tall diving board,
our weight accelerates us downwards but we don’t feel it. It feels like
we are weightless, but we are not!
* Apparent weightlessness is when the only force acting is your
weight.
* Real weightlessness is when your weight is zero.
Weight=700 N

You get a similar feeling when a car goes over a humpback bridge
or when an aircraft climbs or descends. We notice the change in the

Figure 3.49 This diver would contact force and this makes us feel like our weight has changed.

experience apparent weightlessness
for a brief period of time.

H Grade 9
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Another common example is when you are in a lift. If the lift is not
accelerating the two forces are equal, as shown in Figure 3.51.

If the lift accelerates upwards then there must be a net force acting
on it. A net force also needs to act on you as you are inside the lift!

Imagine the net force acting on you is 200 N (assuming your mass is r

70 kg this would give an acceleration of 2.86 m/s?). :::

The floor would push you up harder; the contact force would have g

to increase to 900 N. This provides the extra 200 N. You feel heavier, 1

even though your weight has not changed. It would feel like your Figure 3.50 The contact force we
weight is 900 N. This is referred to as your apparent weight; your experience changes dramatically

real weight is still 700 N. on an exciting roller coaster ride.

The same is true if the lift were to accelerate downwards. Again
imagine the net force on you is 200 N. In this case the contact force
would drop 200 N to 500 N. You would feel like your weight has

dropped! Your apparent weight would be 500 N. Think about this...

You only notice this effect
when the lift accelerates. When
the lift is travelling at a steady
speed the forces are balanced
w = mg State principle or equation to be used again (from Newton’s first law).

You can use Newton’s second law to determine your apparent
weight in an accelerating lift. Taking a person of mass 55 kg then
their weight would be:

w =55 kg x 10 N/kg Substitute in known values and complete
calculation

w =550 N Clearly state the answer with unit KEY WORDS

apparent weight the
resultant of an object’s real

If this person is in a lift accelerating vertically upwards at 2 m/s?
then the net force acting on the person would be:

F ,=ma State principle or equation to be used (Newtons second law) weight and any contact forces
F ,=55kgx2m/s® Substitute in known values and complete acting on the object
calculation real weight the force

experienced by an object
solely due to the gravitational
This force would come from an'increase in the contact force. The pull of the Earth

contact force would have to go up to 660 N (550 N + 110 N). This

would be your apparent weight.

F ,=110 N Clearly state the answer'with unit

Contact force=700 N § Contact force=900 N Contact force=500 N
Fret =200 N /\ Fret=200 N
Weight=700 N Weight=700 N l Weight=700 N
Figure 3.51 Contact force and Figure 3.52 Accelerating Figure 3.53 Accelerating downwards
weight in a stationary lift. upwards requires a net requires a net vertical force. This
vertical force. time you would feel like your weight
has dropped.
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(§

N
/\\

Contact force=0 N

Fret=700 N

1T

/I\

Weight=700 N

Figure 3.54 If the contact force
is zero you would be apparently
weightless.

DID YOU KNOW?

As part of astronaut training
trainees take a flight in an
aircraft commonly called
the Vomit Comet! This air-
craft accelerates downwards
at 9.81 m/s% this means the
contact force inside the air-
craft falls to zero. All the
occupants become
apparently weightless for
around 30 s (until the air-
craft needs to pull up again).

Force from engines

Fnet

‘ Weight of rocket

Figure 3.56 A free body diagram
for the forces acting on a rocket at

take off.

If the lift was accelerating downwards at 2 m/s? then your apparent
weight would be 440 N. This would give a net force vertically
downwards equal to 110 N.

If the lift cable were to snap then as the lift accelerates towards

the ground the contact force would fall to zero! The floor would
stop pushing you up. You would feel like you-are weightless. Your
apparent weight would be 0 N; you would be apparently weightless.

. ) - N
t\ l‘/ - - ~
Figure 3.55 A photo of the infamous “Vomit Comet’

F .. = ma considering the weight of the object

We must always think carefully when solving F | = ma problems.
Take for example a rocket of mass 15 000 kg. If the engines provide
a force of 200 000 N what would its acceleration be?

* F =ma
* a=F ,/m

* a=200000N /15000 kg
* a=13.3m/s’

This is wrong! We've not used the resultant force. Remember free
body diagrams really help to identify all the forces acting on an
object.

You can see the resultant force is equal to:

F = force from engines — weight of rocket Express F in terms of all
forces acting

F ,=200000N - (15000 kg x 10 N/kg) Substitute in known values

F,,=200000 N - 150 000 N Solve calculation in brackets then
complete calculation

F,,, = 5000 N Clearly state the answer with unit
This would give us an acceleration equal to:
F ,= ma State principle or equation to be used (Newton’s second law)

a=F  /m Rearrange equation to make a the subject
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a = 5000 N /15 000 kg Substitute in known values and complete

calculation

a =0.3 m/s* Clearly state the answer with unit

We must always make sure we consider all the forces involved
before determining the resultant force acting on an object.

In this section you have learnt that:

® The overall force acting on an object is called the resultant

force. The equilibrant force is the force that needs to be
applied to cancel out the resultant force.

A resultant force will cause an object to accelerate in the
same direction as the resultant force.

Newton's second law states: “Force is directly proportional to
acceleration, as long as the mass remains constant, and the
acceleration is in the same direction of the force”. This gives
us f . =ma.

In order to determine the resultant force, the forces acting
on the object may need to be resolved then combined
together again.

Mass is a measure of the amount of matter measured in kg,
whereas weight is a force measured in N caused by gravity
pulling on an object’s mass.

Review questions

1. Explain what is meant by the terms resultant force and
equilibrant force. '
2. Describe Newton’s second law.
3. Copy and complete Table 3.4.
Table 3.4
Force (N) Mass (kg) Acceleration (m/s?)
100 40
60 10
1000 25
0.2 10
30 600
4. Figure 3.57 shows the forces acting on three different objects.
For each:
(a) calculate the resultant force acting;
(b) say whether the forces are balanced or unbalanced;
(c) calculate the object’s acceleration.
5. Explain the differences between mass and weight.
Grade 9

free body diagrams are used
to gain an understanding of
the forces (or sometimes the
fields) acting on an object

DID YOU KNOW?

When large rockets take oft
their acceleration usually
increases for the first few
minutes of their flight.

The acceleration starts off
quite low then increases

as the rocket burns fuel.
This has a significant effect
on its acceleration for two
reasons. Firstly the weight
drops and so this increases
the resultant force acting
and secondly as the object
has less mass its acceleration
will be greater (remember
acceleration and mass are
inversely proportional).

20N N 25N
37N
———
63N
—_—> 10 kg
26N
—==
20N 0.2 kg
30N
———

15N

Figure 3.57 See Question 4
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Figure 3.58 Even very smooth

surfaces have a rough texture at
the microscopic level.

friction the force generated
when solids slide or attempt
to slide over each other

Figure 3.60 Sandpaper is very
rough. Sliding over sandpaper
generates a great deal of friction.

3.3 Frictional forces

By the end of this section you should be able to:
e Explain the causes of frictional forces.

e Describe the differences between limiting friction, static
friction and kinetic friction.

¢ Draw free body diagrams for objects on inclined planes (to
include frictional forces) and use these diagrams to solve
problems.

What causes friction?

Friction is a force we experience every single day. Without friction
even the simplest of actions, like walking, would be impossible.
Friction occurs whenever two solids rub-against each other. It is

a contact force and it always tends to act in a direction opposing
motion. :

It is caused by tiny bumps in the surface of the two objects knocking
and locking together. No surface is péerfectly smooth. This is obvious
if you look closely at sandpaper but you need to look really close at
smoother objects like a metal sheet.

Figure _3.59 The bumps on the surfaces of material knock together
causing friction.

When magnified, you can see all the small bumps in the surface of a
material. It is these bumps that cause friction.

Different types of friction

There are two different types of friction. It depends on if the objects
in contact are moving or if they are stationary.

Static friction

* This is the frictional force between two objects that are
in contact and trying to move past each other, but not yet
moving.

Imagine gently pushing a heavy book on a desk. At first it does not
accelerate. This is because the force you are applying is cancelled
out due to static friction. As you gradually increase the force the
static friction also increases and the book remains stationary. If

Grade 9
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you continue to push harder, eventually the book will slide. The
maximum value of the static friction, i.e. the value just before
sliding occurs, is called the limiting friction.

Kinetic friction (sometimes called dynamic friction)

¢ This is the frictional force between two objects sliding over
each other.

It always acts in the opposite direction to motion.

force of friction

~

string

\ effort

floor

Figure 3.61 Kinetic friction always acts in the opposite direction to
motion.

The force of friction usually drops when objects start moving and
so it is often the case that kinetic friction is less than the limiting
friction of a surface.

Factors affecting the frictional force

There are several factors affecting the force of friction between
objects.

Perhaps the most obvious is the roughness of the surface. The
rougher the surface, the greater the friction. In simple terms the
bumps on the surface are bigger or more frequent. This causes them
to lock together more easily or more often.

You might think the weight of the object affects the friction. A
heavier object will push down harder on the surface locking the
bumps together harder and so increasing the force of friction.
This is generally true but actually it is the contact force that affects
the friction. Think about the lift example covered in the previous
section. When the lift is accelerating downwards the weight stays
the same but the contact force (and so the frictional force) would
drop. This is especially important when considering objects on
slopes (more on this later).
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Think about this...

Friction only happens when
solids rub together. This
means that there is no such
thing as friction with the air
or friction through water;
both of these examples

are types of drag. This is a
different type of force.

Figure 3.62 The friction between
snow and ski is very small. This
allows professional skiers to reach
some very high speeds.

KEY WORDS

kinetic friction the frictional
force between two objects
sliding over each other
limiting friction the
maximum value of static
friction

static friction the frictional
force between two objects
that are trying to move
against each other but are not
yet moving

roughness a measure of the
texture of a surface
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DID YOU KNOW?

Friction is really just
another example of the
electrostatic force. It is
caused by the electrons in
the atoms in the bumps
repelling each other.

Think about this...

The surface area of the
objects in contact with each
other does not affect the

frictional force between them.

Although there is a greater
area in contact, the weight of
the object is more spread out
and so there is no change in
the frictional force.

coefficient of friction a
ratio representing the friction
between two surfaces

The friction force between objects can be calculated using the
following equation:

* F.=uN
where:
F, is the frictional force.

i is a constant called the coeflicient of friction, which depends
on the roughness of the two surfaces. A high coefficient of friction
would mean that the surfaces are very rough and so this'would
lead to a high frictional force. Materials have a static coefficient of
friction and a kinetic coeflicient of friction, depending on the type
of friction being calculated.

N is the normal contact force acting on the block. Normal in this
case means at right angles to the surface. If the block is horizontal
and there is no vertical acceleration then‘the normal contact force is
equal to the weight.

Moving in this direction

Ft

Figure 3.63 Factors affecting friction

Table 3.5 Examples of the static friction coefficient between materials

Materials rubbing together B
Aluminium Steel 0.61
Concrete Rubber 1.00
Concrete Wood 0.62
Steel Teflon 0.04
Wood Wood 0.45

Worked example

The kinetic coefficient of friction between rubber and asphalt
is 0.8. Calculate the force of friction acting on a rubber block
of mass 2.0 kg as it is pulled along a level road at a steady
speed.

F.=u,...N Stateprinciple or equation to be used
F.=0.8 x N Substitute in known value for y

As the road is level the normal contact force is equal to the
weight of the rubber block. In this case the weight = 20 N
(2 kg x 10 N/kg)
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F.=0.8 x 20 N Substitute in known values and complete
calculation

F.=16 N Clearly state the answer with unit

A 12 kg block of wood is stationary on a horizontal concrete
slab. The maximum coefficient of static friction between wood
and concrete is 0.65 (this occurs at the limiting friction). What
force needs to be applied in order to slide the block along.

Fo=u_ N State principle or equation to be used
F.=0.65 x N Substitute in known constant for u

static

As the block is level the normal contact force is equal to the
weight of the wood. In this case the weight = 120 N

F.=0.65 x 120 N Substitute in known values and complete
calculation

F. =78 N Clearly state the answer with unit

e Tie a block of wood with string to the hook of a spring
balance. Place the block on a table. Pull the balance
gradually parallel to the table. Note its reading when the
block just starts to move.

e Repeat and take the average of the results.

You have measured the maximum force of static friction (the
limiting friction).

¢ Now pull the balance until the block moves steadily along.
Note the reading.

® Repeat several times and take the average.
You have measured the force of dynamic friction.

e Which is greater?

forcemeter

table ‘

block =~

Figure 3.65 Measuring friction using a spring balance

You must ensure you pull the block along at a steady speed.
This tells us the forces are balanced and the reading on the
spring balance is the same as the frictional force.
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DID YOU KNOW?

Tetlon has one of the lowest
coeflicients of friction

of any material. It was
accidentally invented by

an American named Roy
Plunkett in 1938. The use
of Teflon was important in
Americas development of
the atomic bomb. Nowadays
its low friction makes it
ideal for non-stick frying
pans!

Figure 3.64 Non-stick frying
pans have a very low friction
coefficient.
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inclined plane a sloping
surface or ramp

Force due
to static
friction

Weight of block

Figure 3.67 Forces acting on a
block on a slope

Weight of block N

' Force due to
static friction

Figure 3.68 The three forces form
a triangle- with no resultant force.

Friction and inclined planes

If an object is resting on an inclined plane the normal contact force
is reduced (the weight stays the same). This means the frictional
force is also reduced.

Figure 3.66 A wooden block on a slope

Let’s assume the block is not sliding down the ramp. If we consider
the forces acting on the object we can see that there are three
different forces.

As the object is not accelerating (in this case it is stationary) we can
conclude from Newtonss first law that there is no resultant force
acting.

These three forces must form a triangle, as shown in Figure 3.68.
The normal contact force is given by:
* N=wcos0

This is-always true regardless of if the object is in equilibrium or
not. As aresult, as the angle of the slope increases the normal
contact force falls and so does the force due to friction. If the slope
was vertical then the force due to friction would be 0 N.

In order for the block to remain stationary (i.e. the forces remain
balanced) then the force due to static friction must equal:

e F=wsinB

where w is the weight of the block, F is the force due to static
friction and 0 is the angle of the slope.

However, the force of friction is also equal to:
* Ff = #staticN
In this case N = w cos 0, so:

* F=p, wcos

static
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As the angle of the slope increases, cos 0 gets smaller. This means
the frictional force that can be provided also falls (as all the other
variables are constant). At the same time the force required to keep
the object stationary (w sin 6) increases.

This means as the slope gets steeper eventually the block will
accelerate down the slope as the forces can no longer be balanced;
the limiting friction has been reached and exceeded.

If the object is accelerating down the slope then there must be a
resultant force acting on the object.

This resultant force is equal to the difference between w sin 8 and
the force due to kinetic friction.

. — 1 _
E t wsin e #kinetic N

ne

Take, for example, a block of wood of mass 30 kg accelerating down
a concrete slope inclined at 45°. We could use the formula above to

calculate the acceleration of the block. The y,, . between the wood

and the slope is = 0.45.

First we need to find the resultant force:

* F_=wsin®-yu_ N ExpressF,  in terms of other forces

In this case the weight of the block is 300 N (from w ='mg) and the
normal contact force is 212 N (from N = w cos 6).

F _,=300 N x sin 45° - (0.45 x 212 N) Substitute.in known values and
complete calculation

F ,=117 N Clearly state the answer with unit

The acceleration of the block can then be calculated using Newton’s
second law.

F ,=ma State principle or equation to be used (Newtons sécond law)
a=F _ /m Rearrange equation to make.a the subject

a =117 N /30 kg Substitute in known values and complete calculation

a =3.3m/s* Clearly state the answer with unit

Reducing friction

In order to reduce the friction between objects there are two
techniques that can be used.

Polishing

Polishing or sanding down an object reduces the size of the bumps
on the surface. This makes it smoother and so the coefficient of
friction drops.

TN~

Unpolished surface

—_—— .

Polished surface

Figure 3.70 Polishing reduces the roughness of a surface.

Grade 9

Think about this...

Putting the two equations
for the friction force equal to
each other: wsin6=p_ . w
cos 0. This can be rewritten
astan 6 =p_ . and so the
maximum angle of the slope
before the block will slide is
given by 6 = tan™ p_ .. The
higher the maximum value
s the steeper the slope
can before the object slides

down the slope.

Force due to static friction

Weight of block

Figure 3.69 The object slides due
to a resultant force.
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Figure 3.72 Without oil vehicle
engines would heat up too much
and possibly seize up entirely.

Figure 3.73 Friction between

board and chalk causesthe chalk

to gradually wear.away

Figure 3.74 Ball bearings ensure
that a wheel turns smoothly on its
axle.

Lubrication

Lubricating between the surfaces rubbing together also reduces
friction. Commonly used lubricants include oil, water and even
graphite.

The lubricant effectively fills the gaps between the materials, -
preventing them from bumping into each other and so allowing
them to slide over each other easily. {

=

Surfaces without lubrication Surfaces with lubrication between them

Figure 3.71 Lubrication keeps the sz)rfaces apart.

The effects of friction

Friction causes a heating effect. When you rub your hands together
friction between them causes them to warm up. This has many
applications but also causes several problems.

Advantages of friction

Is friction always a problem? No. We could not walk if there was no
friction. Our feet would'slip, just as they do on ice, banana skin or
very smooth surfaces. Rubber-soled shoes and car tyres have ‘tread’
on them to increase friction. Smooth tyres tend to skid, especially
on wet, greasy or icy roads.

The brakes on a bicycle, car or other vehicle make use of friction.
The brake pads press on the wheels, slowing them down.

Figure 3.73 shows one situation where friction is useful. Without
friction, the teacher’s chalk would not mark the board.

Disadvantages of friction

When two parts of any machine rub against each other, the friction
between them causes heat, noise and wear. The heat produced in

.. fast-moving machines may be so great that the parts become red-

hot.

Friction is reduced by lubrication with grease, oil or graphite.
Bicycles and sewing machines need oil regularly. The engine of a
motor car has a case at the bottom, called a sump, which is full of
oil. This covers all the moving parts in the engine. If the engine has
too little oil, the pistons and cylinders become so hot that they join
together.

A bicycle wheel must turn freely. If there is friction between the
wheel and its axle, the bicycle will be harder to ride. Ball bearings
between the wheel and axle allow the wheel to turn freely - see
Figure 3.74.

Grade 9
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In this section you have learnt that:

® Friction is a force generated when solids either attempt to
slide or slide over each other.

¢ Friction is caused by bumps in the surface of the materials.

e Static friction occurs when objects try to move past each
other. Kinetic friction occurs when objects slide over each
other; it acts in the opposite direction to motion.

¢ Frictional forces can be calculated using F = yN (where N is
the normal contact force - this reduces if the object is on an
inclined plane).

Review questions

1. Describe the causes of friction and the factors that affect it:

2. Explain the difference between static friction and kinetic
friction.

3. If the static friction between wood and concrete is 0.62,
determine the force required to make a wooden block of mass
2 kg start to slide.

4. Give two examples in which friction is useful and two where it
is a disadvantage.

3.4 Newton’s third law

By the end of this section you should be able to:
e State Newton'’s third law.

e Describe experiments to demonstrate it and give examples
of where it is applicable.

The third law of motion

Newton’s third law deals with what happens when you apply a force.
It is perhaps the most counter-intuitive of Newton’s three laws.
It states:

¢ Ifbody A exerts a force on body B then body B will exert an
equal and opposite force on body A.

In simple terms this means whenever you push an object it pushes
back with an equal and opposite force; essentially forces come

in pairs. You can't apply a force to an object without that object
applying the same force back onto you.

Grade 9




UNIT 3: Forces and Newton's laws of motion

push of chair
on boy

e 0
push of push of
wall on girl girl on wall

pull of éfaviw

on child
Ve pull of child
d ‘on Earth
push of boy
on chair

smemt;e Figure 3.75 Examples of Newtons third law in action.

/ The pairs of forces are often called a Newton’s pair or an action
craviaiona  and reaction pair. It is important to notice that they are equal and
Saene. " opposite. /

/

* Equal: same magnitude
* Opposite: oppoéit_e direction

If you push dewn on the desk with a force of 10 N the desk pushes
back up witha force of 10 N. This applies to all forces!

Figure 3 76 An example of It may seem strange but the gravitational attraction of the Earth
Newtons pairs on a satellite is exactly the same size as the pull on the Earth from
the satellite. The same is true at ground level. If you hold a stone
above the Earth then it pulls the Earth up with the same force that
the Earth pulls to stone down. When you drop it the stone appears
to fall but both the stone and the Earth experience the same force.
Newton’s pair a pair of equal | However, the stone’s acceleration is much, much greater as it has
and opposite forces acting much less mass.

between two objects

To correctly identify Newton’s pairs it is worth remembering that
the pairs of forces must fit the following four criteria:

* equal in magnitude
* ' opposite direction
\ . "+ act on different bodies
"+ 'same type of force

So, for example, consider a book on a desk.

Figure 3.77 Two forces acting on
a book, but they are not a Newton

i Weight of book
pazr. (gravitational attraction to Earth)

Grade 9
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Figure 3.77 shows two forces acting on the book, but they are not an
action-reaction pair. They are equal and opposite but they do not
act on different bodies and they are not the same type of force.

So, where are the Newton’s pairs in this example?

Table 3.6 Newton’s pairs for a book on a desk

Force Newton’s pair

Contact force on book from desk | Contact force on desk from
book

Weight of book (gravitational Gravitational attraction of the
attraction of the Earth pulling |book pulling on the Earth

on the book)

The book pushes down on the desk and pulls the Earth upward due
to gravitational attraction. These are the pairs to the two forces in
Figure 3.77. If we draw three free body diagrams (Figure 3.78) we
can more easily see the pairs of forces.

Pull of
book on
A Earth
& Push of
desk on
book

Desk
Push of
Earth on
Push of ¥ book
book on
desk

Figure 3.78 The two pairs of forces

There are two more pairs of forces not included in Figure 3.78. Can
you work out what theyare? (Hint: they do not involve the book).

Applications of the third law

Newton’s third law is incredibly important to motion. Applications
such as rockets, jet engines, cars and even just walking around rely
on this law.

When you walk you push backwards on the ground; at the same
time the ground pushes forward on you and so you accelerate

) . Tyre pushes Road pushes tyre
forwards! The same is true with car tyres. back onroad  forward with an
. . . equal but opposite
With a rocket or jet engine hot gases are blasted out of the back; force
they are in essence pushed out. This results in an equal and opposite  Figure 3.79 Newton’s third law in
force on the engine pushing it forward. action

Grade 9
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Activity 3.5: Discovering equal and opposite forces

With a partner get a rope and two skateboards. Both stand on
a board some distance apart and hold a rope between you. If
one of you holds the rope and the other one pulls it towards
them, who moves?

You both will! An equal and opposite force is exerted on the
puller. If he pulls with twice as much force he will experience
twice as much force pulling him forwards.

In this section you have learnt that:

Figure 3.80 Without Newton’s * Newton’s third law states: “If body A exerts a force on body
third law space rockets would not B then body B will exert an equal and opposite force on
be able to move! body A”.

¢ Newton’s third law means forces always come in pairs.

Review questions

1. State Newton’s third law.

2. Describe the characteristics of Newton’s pairs of forces and give
three different examples.

DID YOU KNOW?

As well as linear
momentum there is another
physical property called
angular momentum. This e Define linear momentum and state its units.
is all to do with the rotation
of a spinning object. For the

By the end of this section you should be able to:

e State the law of conservation of momentum.

purpose of the following ¢ Define the term impulse and state its units.
sections any reference to ~® Solve numerical problems relating to momentum,
momentum refers to linear  § - conservation of momentum and impulse.
momentum.

e State Newton’s second law in terms of momentum.

Wt s tnear momentun?

Linear momentum is another important idea in physics. It can

be thought of as a measure of how hard it is to stop a moving

. object; the ‘unstopability’ of the object. Objects with a larger linear
: > © _  momentum are harder to stop!
i’ . -
Figure 3.81 A charging rhino has
a large momentum!

Grade 9

There are two factors that make an object hard to stop, its mass and
its velocity. The greater the mass the harder it is to stop, the faster
an object is moving the harder it is to stop. Linear momentum is
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defined as the product of an object’s mass and velocity. This leads to
the equation for linear momentum:

* linear momentum = mass x velocity

Or in symbols:

s p=my

p is the symbol for linear momentum and as the units of mass are

kg and the units of velocity are m/s it follows the units of linear
momentum are kg m/s.

For example, a rhino running at top speed has quite a large
momentumy; it’s very hard to stop! An adult black rhino may have
a mass of 1000 kg and for short periods of time can reach 15 m/s
when sprinting. To find its momentum we would use the equation:

momentum = mass x velocity State principle or equation to be used
(definition of momentum,)

p =1000 kg x 15 m/s Substitute in known values and complete
calculation

p =15000kg m/s Clearly state the answer with unit

A sprinting human may have a momentum of around 640 kg m/s
(assuming a velocity of 8 m/s and a mass of 80 kg).

Momentum is a vector quantity. This means the direction of motion
of the object is really important. For example, take a situation where
two identical cars are heading towards each other.

—

10 m/s

10 m/s

Car A CarB

Figure 3.83 Two head-on cars
The momentum of car A is:

momentum, = mass$, x velocity, State principle or equation to be
used (definition of momentum applied to car A)

p, = 1200 kg x 10 m/s Substitute jn known values and complete
calculation

p, = 12000 kg m/s to the right Clearly state the answer with unit
The momentum of car B is:

momentum, = mass, x velocity, State principle or equation to be used
(definition of momentum applied to car B)

P, =1200 kg x 10 m/s Substitute in known values and complete
calculation

p, =12 000 kg m/s to the left Clearly state the answer with unit

Grade 9

KEY WORDS

angular momentum the
momentum of an object
moving in a circle

linear momentum a measure
of how hard it is to stop a
moving object

law of conservation of
linear momentum law
stating that in a closed
system, the total linear
momentum will remain
constant

Figure 3.82 Due to its large
mass a moving train has a large
momentum.

Think about this...

The equation for momentum
shows that both the mass
and velocity of an object
are directly proportional to
its momentum. This means
an object with twice the
mass travelling at the same
speed will have double the
momentum. Alternatively, an
object going twice as fast will
have double the momentum.
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DID YOU KNOW?

There are several
conservation laws in
physics. They include
conservation of energy,
conservation of linear
momentum, conservation
of angular momentum and
conservation of electric
charge. They form the basis
of modern physics and
always apply!

This could be written as:
p,=-12000 kg m/s.

This is really important because if you consider the cars together
as one system then the total momentum is 0 kg m/s (not 24 000 kg
m/s).

The law of conservation of linear momentum

One of the most important conservation laws in physicsis the law
of conservation of linear momentum. It states:

* Inaclosed system the total linear momentum must remain
constant.

This means that when objects collide the total linear momentum
before the collision must equal the total linear momentum after the
collision as long as no external forces act on the system. In symbolic
terms this may be written as:

'Y —_
Zp initial — Zp final
> means ‘sum of’.

Take, for example, a ball of mass 2.0 kg travelling at 5 m/s towards a
ball of mass 1kg.

5mj/s

Ball A Ball B

Figure 3.84 Two balls about to collide

The momentum before the collision must equal the momentum of
ball A plusthe momentum of ball B. Ball B is not moving so it has a
momentum of 0 kg m/s.

momentum, = mass, x velocity, State principle or equation to be
used (definition of momentum)

P, = 1.0kg x 5 m/s Substitute in known values and complete
calculation

p, = 5kgm/s to the right Clearly state the answer with unit

This is the total momentum before the collision. The law of
conservation of momentum states the momentum after the collision
must also equal 5 kg m/s to the right.

This gives us several possible outcomes.

Outcome 1: Ball A stops and ball B moves away with a certain
velocity.

Grade 9
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?m/s

Ball A Ball B

Figure 3.85 Ball B moves away from ball A

We can work out the velocity of ball B. As the total momentum of
the system must equal 5 kg m/s then the momentum of ball B must
be 5 kg m/s.

momentum, = mass, x velocity, State principle or equation to be used
(definition of momentum)

velocity, = momentum, / mass, Rearrange equation to make velocity,
the subject

v,=5kgm/s/2.0kg Substitute in known values and complete
calculation

v, = 2.5 m/s to the right Clearly state the answer with unit

Thinking about this answer it makes sense. Ball B has twice the
mass of ball A and so the velocity will need to be half of that of ball
A before they collided.

Outcome 2: The balls stick together (imagine there are magnets
inside them) and they move away together with a certain velocity.

——
?m/s

Ball A

Ball B
Figure 3.86 The balls stick together

We can work out the velocity of the balls when they stick together.
Just like the previous example the total momentum of the system
must equal 5 kg m/s then the momentum of the balls must be 5 kg
m/s.

momentum = mass x velocity ‘State principle or equation to be used
(definition of momentum,)

velocity = momentum// mass  Rearrange equation to make velocity the
subject

v=>5kgm/s/3.0kg Substitute in known values and complete
calculation

Notice we had to use a mass of 3.0 kg as this is the total mass of the
two balls.

* v=17m/s to theright Clearly state the answer with unit

Grade 9

Think about this...

If the mass of the system
remains constant we can
rewrite the equation as F_,

= mAv / At. Only velocity

is changing as the mass is
constant. From Unit 2 we
know that Av / At is the
acceleration of the object. As
a result we get F_, = ma but
only if the mass is constant!

Think about this...

If the object changes
direction then you mustn’t
forget momentum is a vector
quantity. A ball going from

a momentum of 10 kg m/s
to the left to 5 kg m/s to
the right has experienced a
change of momentum of

15 kg m/s to the right.
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Outcome 3: Ball A bounces back off ball B. Ball B moves to the
right with a velocity of 3 m/s and ball A moves back in opposite

direction.
—
?m/s 3m/s
Ball A Ball B

Figure 3.87 Ball A bounces off ball B and both balls mave

Again, just like the previous example the total momentum of the
system must equal 5 kg m/s. However, this time both the balls have
a momentum. The momentum of ball B is given by:

momentum, = mass, x velocity, State principle or equation to be used
(definition of momentum,)

P, = 2.0 kg x 3 m/s. Substitute in known values and complete
calculation

p, = 6 kg m/sto/the right Clearly state the answer with unit

In order for momentum to be conserved ball A must have a
momentum of -1 kg m/s or a momentum of 1 kg m/s to the left.
This will give us a total momentum of 5 kg m/s to the right.

The velocity of ball A can then be calculated.

momentum, = mass, x velocity, State principle or equation to be
used (definition of momentum)

velocity, = momentum, / mass, Rearrange equation to make
velocity, the subject

v, =-1kgm/s/ 1.0kg Substitute in known values and complete
calculation

v, =-1m/sor 1 m/stotheleft Clearly state the answer with unit

There are several other possible outcomes depending on the
masses of the objects and the materials they are made out of. In
every possible case the linear momentum of the system must be
conserved!

Explosions

When a gun is fired, an explosion occurs inside the gun and the
bullet flies off at high speed. The person firing the gun has to be
ready for the recoil - the gun pushes back against their shoulder,
in the opposite direction to the direction of the bullet. Figure 3.88
shows why this is.

¢ 'The bullet has a small mass and a high velocity, towards the right.

* The gun has a larger mass and a smaller velocity, towards the left.

Grade 9
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05ms" 500ms "
< |
5kg 5¢g

Figure 3.88 The momentum of the bullet is equal and opposite to the
momentum of the gun

Before the explosion, neither the gun nor the bullet had any
momentum. In the explosion, the bullet is given momentum to

the right, while the gun is given an equal amount of momentum

to the left. Recall that momentum is a vector quantity; equal and
opposite amounts of momentum cancel out, so the total amount of
momentum after the explosion is zero. Hence there is just as much
momentum after the explosion as there was before it, so we can
again see that momentum has been conserved.

Back to Newton’s second law
Earlier we discussed Newton’s second law as:

¢ The acceleration of an object is directly proportional to the
resultant force acting on the object.

and

* This acceleration occurs in the direction of the resultant force.

However, this only applies if the mass of the system remains
constant. Newton’s original concept for the second law involved
forces changing the linear momentum of objects.

He said:

* The resultant force acting on an object must be directly
proportional to the rate of change of linear momentum of the
object.

and

* The change in linear momentum occurs in the same direction
as the resultant force.

Using symbols this becomes:
* F_=A"/At

n

(Remember the A means ‘change in’)

To recap, the law of conservation of linear momentum states that
the momentum must remain constant unless an external force
acts. What Newton’s'second law tells us is that the momentum of
a system can change if a force acts on it. The two compliment each
other!

Grade 9

Figure 3.89 An explosive
situation

Find two students with
the same mass. Make
them stand on platforms
with wheels, facing each
other (Figure 3.89).

One student pushes

the other gently, in an
attempt to make him or
her move away. (This is
a simple way of making
an ‘explosion” in the lab.)
What happens?

Does it make any
difference which student
does the pushing, or if
both push?

Try again with students
having different masses.
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impulse the magnitude of a
force multiplied by the time
for which it acts

Worked example

A car of mass 1400 kg accelerates from 10 m/s to 15 m/s over
3.5 s. Find the average resultant force acting.

F . =A™/ At State principle or equation to be used (Newton’s
second law in terms of momentum)

The change in momentum is equal to the final momentum
minus the initial momentum.

Amv = mv — mu Express simple statement of change in momentum

Amv = (1400 kg x 15 m/s) - (1400 kg x 10 m/s) Substitute in
known values and complete calculation

Amv = 7000 kg m/s Clearly state the answer with unit

F .=A4mv/ At State principle or equation to be used (Newton’s
second law in terms of momentum)

F . =7000 kg m/s / 3.5 s Substitute in known values and
complete calculation

F .=2000 N, in the direction of its acceleration Clearly state
the answer with unit

(As the mass of this system can be assumed to be constant we
could have used F = ma).

Worked example

Imagine gently hitting a tennis ball of mass 100 g with a force
of 50 N. The tennis racket and ball are in contact for just 0.02
s. We can calculate the change in momentum.

F . =4mv/ At State principle or equation to be used (Newton’s
second law in terms of momentum)

Amv =F  x At Rearrange equation to make Amv the subject

Amv =50 N x 0.02 s Substitute in known values and complete
calculation

Amv = 1.0 kg m/s in the direction of the 50 N force Clearly
state the answer with unit

Acting on impulse

The impulse of a force is the magnitude of the force multiplied by
the time which it acts.

* Impulse = FAt
The units of impulse are usually expressed as N's.

An impulse of 10 N s could be caused by a 10 N force acting
for 1 sora 1 N force acting for 10 s (and thousands of other
combinations!).

Grade 9
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From Newton’s second law we get:
* F  =Amv/At

n

This can be written as:
* F _,At=Amy=impulse
¢ The impulse of a force is also equal to the change in

momentum of the object.

So, the longer the force acts on an object the greater the impulse
and so the greater the change in momentum.

Worked example

A footballer kicks a stationary ball of mass 1 kg with a force
of 90 N. The first time his foot is in contact with the ball for
just 0.01 s. The second time he follows through and his foot
is in contact with the ball for 0.1 s. Find the impulse, change
in momentum and the velocity of the ball after impact in each
case.

Table 3.7 Calculating the velocity of footballs

At=0.01s

At=0.15s

Impulse = FAt

Impulse = FAt

Impulse =90 N x 0.01 s

Impulse =90 N x 0.1 s

Impulse =0.9 N s

Impulse =9 Ns

Change in momentum =
impulse

Change in momentum =
impulse

Change in momentum = 0.9
kg m/s

Change in momentum = 9 kg

m/s

As the initial momentum
was 0 kg m/s the change in
momentum must equal the

final momentum of the ball.

As the initial momentum
was 0 kg m/s the change in
momentum must equal the
final momentum of the ball.

Final momentum = 0.9 kg
m/s

Final momentum = 9 kg m/s

p=mvsov=p/m

p=mvsov=p/m

v=0.9kgm/s/1kg

v=9kgm/s/1kg

v=0.9m/s

v=9m/s

Newton'’s laws and conservation of linear momentum

Using Newton’s laws we can prove the law of conservation of linear
momentum. Imagine two railway carriages. If one crashes into

the other, they will exert equal and opposite forces on each other
(Newtonss third law). This force will be acting for the same time on

Grade 9

Think about this...

In most sports participants
are encouraged to follow
through when kicking or
hitting a ball. This increases
the time the force is acting
and so gives rise to a greater
impulse and so a greater
change in momentum.
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each carriage; therefore the impulse on each carriage will be the
same (FA?).

Both carriages will experience the same force but in opposite
directions. They will therefore have the same change in momentum,
but in opposite directions (Newton’s second law).

v

| “

Figure 3.90 Two railway carriages colliding

The change in momentum of each carriage is given by FAt = Amy.
The first carriage will experience a change in momentum equal and
opposite to the second carriage. Therefore:

s mAvA=-m Ay,

Or

* 0=mAv-mAv,

The total change of momentum of the system is 0 kg m/s; therefore

the momentum has not changed and momentum has to be
conserved!

Summary

In this section you have learnt that:

e Linear momentum is defined as the product of an object’s
mass and velocity (as given by p = mv). It is a vector
quantity measured in kg m/s.

¢ The law of conservation of momentum states: “In a closed
system the total linear momentum remains constant.” This
means if there are no external forces acting then the total
momentum before a collision/explosion must be the same as
the total momentum after the collision/explosion.

e The impulse of a force is defined as the force multiplied by
the time the force is acting. It has units of N s. Impulse is
equal to the change in momentum of an object.

H Grade 9
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¢ In terms of momentum, Newton’s second law can be written
as: “The resultant force acting on an object must be directly
proportional to the rate of change of linear momentum of
the object and the change in linear momentum occurs in the
same direction as the resultant force.” Using symbols this
becomes: F _ =Amv / At

Review questions

1. Define linear momentum and state its units.

2. Calculate the momentum of a car of mass 1200 kg travelling
with a velocity of 30 m/s.

3. A car of mass 500 kg is moving at 24 m/s. A lion of mass 100 kg
drops on to the roof of the car from an overhanging branch. Show
that the car will slow down to 20 m/s.

4. A car of mass 600 kg is moving at a speed of 20 m/s. It collides
with a stationary car of mass 900 kg. If the first car bounces
back at 4 m/s, at what speed does the second car move after the
collision?

5. A ball of mass 4 kg falls to the floor; it lands with a speed
of 6 m/s. It bounces off with the same speed. Show that its
momentum has changed by 48 kg m/s.

3.6 Collisions

By the end of this section you should be able to:

e Distinguish between elastic and inelastic collisions.

Elastic and inelastic collisions will be covered in more detail in
Unit 4. This short section serves as a brief introduction.

Whenever objects collide the linear momentum of the system
must be conserved as long as there are no external forces acting.
However, other quantities, such as kinetic energy, may change.

In a perfectly elastic collision the kinetic energy of the system before
the collision must equal the kinetic energy of the system after the
collision.

* Inan elastic collision the kinetic energy must be conserved.

Perfectly elastic collisions are very rare. Snooker balls come pretty
close but there is always a small drop in kinetic energy (most of
this energy is transformed into heat and sound as the balls knock
together).

A collision where the kinetic energy of the system drops after the
collision is referred to as inelastic. Think of a tennis ball dropped
on to the desk. It will bounce but it does not return to its original
height as some of the kinetic energy has been lost.

Most collisions are inelastic but some are much more inelastic than
others.

Grade 9

KEY WORDS

elastic collision collision

between two objects where
the total kinetic energy is

conserved

inelastic collision collision
between two objects where
the total kinetic energy is less
after the collision

kinetic energy the energy

possessed by an object as a
result of its motion

Figure 3.91 Snooker balls
produce near-perfect elastic
collisions.
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In this section you have learnt that:

e (ollisions can be classed as elastic or inelastic.

¢ TIn an elastic collision the kinetic of energy of the system
does not change.

Review questions

1. Explain the difference between elastic and inelastic collisions.

3.7 The first condition of equilibrium

By the end of this section you should be able to:
e State the conditions required for linear equilibrium.
¢ Decide whether a system is in equilibrium.

e Apply the first condition of equilibrium to solve problems.

What is linear equilibrium?

Equilibrium was discussed briefly in Unit 1. In terms of forces,
the first condition of linear equilibrium is when a body at rest or
moving with uniform velocity has zero acceleration.

From Newton’s first law, for this condition to be satisfied then the
sum of all forces acting on it must be zero. In other words, there is
no resultant force acting on the object.

Using the mathematical symbol X F for the sum of all forces we can
Start/End write:

L — )
\ * ' For linear equilibrium ¥F =0
You must be careful when considering equilibrium. Free body
/ diagrams often help here. Ensure that you have included all the
forces acting on the object; don't forget weight and the contact
forces acting on it.

Figure 3.92 Scale diagram

showing no resultant force If you draw a free body diagram and you end up back at the start
then you can conclude there is no resultant force and the system is
in equilibrium (remember if there are just three forces acting then
they must form a triangle).

Grade 9
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Worked example

Three forces are acting on a hovering helicopter. Its weight
acts vertically downward and there is a strong horizontal wind.
In order to hover, the force from the rotors must be directed
slightly forward. Determine the magnitude of this force and its
angle to the horizontal.

The helicopter is in equilibrium, therefore there is no net force
acting on it. The three forces form a triangle, as shown in
Figure 3.94.

To calculate the magnitude of the force we use Pythagoras’s
theorem:

a? = b? + ¢ State principle or equation to be used (Pythagoras’s
theorem)

a® = (15 000 N)2 + (3000 N)? Substitute in known values and
complete calculation

a =15 300 N Clearly state the answer with unit
To determine angle © we use trigonometry

tan 6 = opp / adj State principle or equation to be used
(trigonometry)

tan 6 = 15 000 / 3000 Substitute in known values and complete
calculation

tan 8 =5 Solve for tan 0
0 = tan™' 5 Rearrange equation to make 0 the subject and solve

0 = 79° Clearly state the answer with unit

In this section you have learnt that:

¢ A system/object is in linear equilibrium if there is no
resultant force acting on it.

1.

Review questions

Explain what is meant by the term linear equilibrium and
describe the conditions required.

2. 'Three forces are acting on an object in equilibrium, as shown
in Figure 3.95. Either using a scale diagram or mathematically
determine the magnitude and direction of force X.

Grade 9

Strong wind=3000 N

Lift="

’ Weight=15 000 N~

Figure 3.93 Three forces acting on

a helicopter.

15000 N

3000

Lift="?

N

Figure 3.94 The forces on the
helicopter form a triangle.

Force X

50 N Vertical

—_—

10 N Horizontal

Figure 3.95 Can you find force X?¢
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6000 N North

2000 N
East

Figure 3.96 Forces acting on an
aircraft

End of unit questions

1.
2.

a

10.

State Newton’s three laws of motion.

Explain what is meant by the term inertia and describe how it is
related to mass.

A force of 10 N causes a spring to extend by 20-mm. Find:
a) the spring constant of the spring in-N/m

b) the extension of the spring when 25 N is applied

c) the force applied that causes an extension of 5 mm.

Calculate the weight of the following objects on Earth (assume
g =10 N/kg). :

a) 12kg
b) 500g
c) 20¢g

d) What is the mass and weight of each of the objects if they
were placed on Mars? (g, = 3.8 N/kg)

A runner of mass 60 kg accelerates at 2.0 m/s* at the start of a
race. Calculate the force provided from her legs.

Two forces are acting on an aircraft of mass 2000 kg, as shown
in Figure 3.96.

Determine the acceleration of the aircraft.

A concrete slab of mass 400 kg accelerates down a concrete
slope inclined at 35°. The y,, . between the slab and slope is
0.60. Determine the acceleration of the block.

State the law of conservation of linear momentum and describe
its consequences.

A bullet of mass 0.01 kg is fired into a sandbag of mass 0.49 kg
hanging from a tree. The sandbag, with the bullet embedded
into it, swings away at 10 m/s. Find:

a) the momentum after the collision
b) the momentum before the collision
c) the velocity of the bullet.

A child of mass 40 kg jumps off a wall and hits the ground at

4 m/s. He bends his knees and stops in 1 s. Calculate the force
required to slow him down. How would this force be different if
he didn’t bend his knees and stopped in 0.1 s?

Grade 9



Work, energy and power

Unit 4

Section

Learning competencies

4.1 Mechanical work
(page 88)

Describe the necessary conditions for work to be done by a force
(including work done by a force F acting on a body at an angle of 8).
Use W = F s cos O to solve problems.

Calculate the work done against gravity, the work done by a
frictional force and the work done by a variable force.

Distinguish between negative and positive work.

4.2 Work-energy
theorem

(page 96)

Explain the relationship between work and energy.

Derive the relationship between work and kinetic energy and use
this to solve problems.

Show the relationship between work and potential energy as

W = -AU and use this to solve problems.

Describe gravitational potential energy and elastic potential
energy.

Explain mechanical energy as the sum of kinetic and potential
energy.

4.3 Conservation of
energy
(page 101)

State the law of conservation of mechanical energy.

Revise the term collision and distinguish between elastic and
inelastic collisions.

Solve problems involving inelastic collisions in one dimension
using the laws of conservation of mechanical energy and
momentum.

Explain the energy changes that take place in an oscillating
pendulum and an oscillating spring-mass system.

Describe the use of energy resources, including wind energy, solar
energy and geothermal energy.

Explain the meaning of the term renewable energy.

4.4 Mechanical power
(page 110)

Solve problems relating to the definition of power.

Show that the kWh is also a unit of work.

Express the formula of mechanical power in terms of average
velocity.

Bouncing a ball involves some complex energy changes and
transfers. No matter what surface you drop the ball on to, it will
never return to its original height. Why is this? In simple terms,
some of the ball’s energy has been transferred into the air and
ground. After the bounce it has less energy than it did before, and
so it can’t return to its original height.

This unit looks at work and energy, how it comes in different forms,
and how you can transform it and transfer it. However, no matter
how hard we try, we can’t make any more energy then there is to
start with, nor can we destroy any.

Grade 9




UNIT 4: Work, energy and power

Figure 4.1 These fishermen are
working hard, but what does the
term working hard mean?

DID YOU KNOW?

The term work was first
used in the 1830s by the
French mathematician
Gaspard-Gustave Coriolis.
He is more famous for
giving his name to the
Coriolis effect. This explains
the rotation of large weather
systems like hurricanes and
cyclones.

il
Figure 4.2 The forklift is
transferring energy to the box as
it lifts it up. It is doing work.

With dwindling global energy resources and continuously
increasing demand, energy issues will play a very significant role in
the next 20 years.

4.1 Mechanical work

By the end of this section you should be able to:

® Describe the necessary conditions for work to be done by a
force (including work done by a force F acting on a body at
an angle of 9).

e Use W= Fs cos 0 to solve problems.

¢ (alculate the work done against gravity, the work done by a
frictional force and the work done by a variable force.

e Distinguish between negative and positive work.

What is work?

The term work is used all the time in-everyday language. You
might go to work, a device may stop working, you might complete
schoolwork, or work hard to solve a problem. However, in physics,
work means something very specific.

You might describe someone performing a physically demanding
task as working hard. This is closer to the truth than it first appears.
In physics the term work (or often work done) is another way of
saying energy is being transferred from one object to another or
transformed from one type to another.

Work done = energy transferred

This means, like energy, work done is measured in joules. (The
joule is the SI derived unit of energy). The more energy transferred
the more work has been done. Work is a scalar quantity, just like
energy.

Calculating work done

Look back at the fishermen in Figure 4.1. As they pull the rope
along they are transferring energy to their catch at the end of the
rope. The harder they pull or the greater distance they travel, the
more energy they transfer, the more work they do.

Mechanical work is defined as the amount of energy transferred by
a force acting through a distance. We can calculate work done using
the following equation:

* W=Fs
W = work done in J.
F = average force applied (it is assumed to be constant) in N.

s = the distance moved in the direction of the force in m.

Grade 9
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Notice we usually use s instead of d or x. This is because the
direction of the distance moved is really important. The distance
travelled has to be in the direction of the force. Either in the same
direction or in the opposite direction (this is often referred to as the
distance against the force). If you are not pulling or pushing against
a force then you are not doing any work. We use s because the
distance has a specific direction; therefore it can be considered to be
a displacement.

* Mechanical work may be defined as the product of
displacement and the force in the direction of the
displacement.

In both examples in Figure 4.3 work is being done, energy is being
transferred or transformed. The first example involves pulling a
trolley along the ground against a frictional force of 2 N. The second
involves lifting a 2 N book. In both cases the distance moved against
the force is 3 m and so 6 ] of work has been done.

* W=Fs
* W=2Nx3m
s W=6]

Looking at the second example the direction of the force is
vertically downwards (it is the weight of the book). Therefore it is
only the vertical distance moved that is important.

Look at Figure 4.4. Assuming the book weighs 2'N and there are no
other forces acting, how much work is done in each case?

Figure 4.4 The distance moved must be.in the opposite direction to
the force.
In example A the work done is simple to calculate: W=Fs, W=6].

Example B is'more complexand serves to illustrate the importance
of working against the force. The book has been moved 5 m.
However, it has only been moved 3 m vertically. It is this distance,
the distance against'the force, which we use in our calculation.

W = F s State principle or equation to be used (definition of mechanical
work)

W =2N x 3 m Substitute in known values and complete calculation
W =6] Clearly state the answer with unit
So in both A and B the work done is 6 J. The energy transferred to

the book is 6 J in each case.

Grade 9

DID YOU KNOW?

One joule is defined as the
work done when a force of 1
N moves through a distance
ofIm.So1J=1Nx1m.

Trolley  ——
—l—g

e

2N

< mmm -
w
3

.
?

2N
Figure 4.3 Two examples of doing
work, for example lifting a book
to place it on a shelf or pushing a
shopping trolley through a store.

DID YOU KNOW?

As well as mechanical work
you can do electrical work
on an object. The equation
for electrical work done

is W = VIt, where V is the
potential difference in volts,
I'is current in amperes and ¢
is time in seconds.

KEY WORDS

energy the stored ability to
do work

joule the SI unit of work and
energy

work / work done the
amount of energy transferred
when an object is moved
through a distance by a force




UNIT 4: Work, energy and power

Figure 4.5 0 is the angle between
the direction of movement and
the direction of the force.

100 N

Figure 4.6 A box lifted up at an
angle

Think about this...

If the angle between the
force and distance moved
is 0° (i.e. they are parallel)
then cos 6 = cos 0° = 1.
The equation W = F s cos 0
becomes W = F s, as used in
the earlier examples.

In example C in Figure 4.4 the book moves 4 m. However, it
does not move any distance against the force (it does not move
vertically). Therefore

s=0m.

* W=Fs

* W=2Nx0m
* W=0]

So in example C no work has been done. No energy has been
transferred to the book.

A more complex version of the work equation can be seen below.
* W=Fscos0

s is the distance travelled.

0 is the angle between the force and the direction of movement.

If you think about this equation, s cos 9 is really.the distance moved
in the direction of the force.

For example, Figure 4.6 shows a 100 N box lifted 20 m at an angle of
60° to the vertical.

The work done would be:

W = Fscos 9 State principle or equation to be used (definition of
mechanical work)

W =100 N x 20 m x cos 60°% Substitute in known values and complete
calculation

W'=1000] Clearly state the answer with unit

Doing work against gravity, friction, and gravity
and friction!

Gravity

Work is often done against gravity. Whenever you lift up an object
you are doing work against the force of gravity. In this case the force
you are working against is the weight of the object. We can adapt
our work done equation for working against gravity:

* W=Fs

* Work done against gravity = weight x vertical distance moved
(or W =wxh)

gravity
The work done in lifting a 60 kg mass vertically 3 m can be found
using the work done equation:

W iy = WX h State principle or equation to be used
w=mg w=60kg x 10 N/kg = 600 N Calculate weight from known
values
W iy = 600 N x 3 m Substitute in known values and complete
calculation
W =1800] Clearly state the answer with unit

gravity
Remember, it must be the vertical distance moved and weight acts
vertically.

Grade 9
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Friction

Whenever you push an object along the ground you are working
against a force of kinetic friction.

Kinetic friction always acts in the opposite direction to motion. In
Unit 3 we learnt that:

. =
friction # kinetic

This is the force you are working against. We can adapt our work

done equation for working against frictional forces:

* W=Fs

* Work done against friction = force due to kinetic friction x
distance moved

Nxs

. =
friction # kinetic

For example, we can determine the work done in pushing a 100 kg
wooden block 30 m across a horizontal concrete floor with g, .. =
0.48

o Nxs

friction = ykinetic
In this case the normal contact force is equal to the weight (as the
floor is horizontal) and so

N =w =mg Express N in terms of weight

N =100 kg x 10 N/kg Substitute in known values.and complete
calculation

N=1000 N Clearly state the answer with unit
Nxs Express W,

riction

distance moved

iction = Prinesic in terms.of frictional force and

Wﬁiaion =0.48 x 1000 N x 30 m Substitute in known values and
complete calculation
Wﬁiaion =14 400 ] or 14.4 K] Clearly state the answer with unit

This energy has been transformed into heat energy where the block
and surface rub together.

Gravity and friction

If you were to push or pull on objectup a ramp then you end up
doing work against both friction-and gravity!

In this case the total work done could be found using the following
equation:

* Total work done ='work done against gravity + Total work
done = work done against friction

Work done against gravity = weight x vertical distance moved.

s W =wxh

gravity
Work done against friction = force due to kinetic friction x distance
moved up ramp.

o Nxs

friction — ykinetic

Grade 9

Distance moved | L
Friction

Figure 4.7 Working against
friction

heat energy energy that
is transferred between two
objects as a result of their
difference in temperature

Friction

Weight of block

Figure 4.8 Working against
friction and gravity
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So:
* vvtotal = (W X h) T (#kineticN X S)

Think about this...

Using the equations in Unit

3 and trigonometry can you We have to be very careful in considering the distances we use in
show how we might expand this equation; & has to be the vertical distance, as this is the distance
the final equation to: moved against gravity, whereas s must be the distance moved up the
W, =(wxssin8) + slope as friction acts down the slope.
(Hineqic % W €0s 8 x s) Worked example

Using the wooden block earlier we can determine the work
KEY WORDS done if the block was pulled 20 m up a ramp at an angle of
graph a drawing showing how 30°.
two or more sets of numbers ¢ Total work done = work done against gravity + work done
are related to each other against friction.

area under the line the area

Work done against gravity:
between the line on a graph . R

and the axes Wiaiy =W X h Express W, in terms of force (weight) and
calculus a type of distance moved (height lifted)
mathematics that deals with In this case w = mg = 100 kg x 10 N/kg = 1000 N. h = vertical
rates of change distance moved, which, using trigonometry, = s sin 6 = 20 m x
sin 30° = 10 m.
ngmy = 1000 N x 10 m Substitute in known values and complete
calculation
W i, = 10 000 3 Clearly state the answer with unit
Work done against friction:

Weiction = HiinetiN % S Express W . in terms of frictional force and
/ distance moved

In this case y,, . =0.48, s =20 m and N =w cos 8 (see Unit
3) = 1000 N x cos 30° = 866 N

— an.cﬁon = 0.48 x 866 N x 20 m Substitute in known values and
complete calculation

Figure 4.9 Pulling an object up a W
mmp friction
Total work done:

W = ngw.ty + W on Simple expression of total work done

Wtom[ =10 000 J + 8300 J Substitute in known values and
complete calculation

= 8313.6 N or 8300 N Clearly state the answer with unit

w

total

= 18 300 J Clearly state the answer with unit

What if the force varies?

If the force applied varies we can’t use the W = F s cos 0 equation to
find the work done. We need a different technique to calculate the
work done.

We can plot a graph of the force applied against the distance
travelled against the force.

H Grade 9
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Force /N Force /N

Area under = Fs

Area under = work done

S

Distance moved against force /m Distance moved against force /m

Figure 4.10 A graph showing Figure 4.11 The area under a

a constant force acting over a force vs. distance moved graph is
distance equal to the work done.
Force /N Force /N

F

Area under the line = Fs

N

Work done

Distance moved against force /m

S

Distance moved against force /m

Figure 4.12 A graph showing a Figure 4.13 The area under
force that increases as the distance the line still represents the
moved increases work done.

The area under the line is equal to F s; it is equal to the work done.
Increasing the distance moved or increasing the force both increases
the area under the line and so more work has been done.

What if the force was not constant but gradually increasing? You
might get a graph that looks like Figure 4.12.

In this case the area under the line is a triangle. This area is still
equal to the work done.

What if the force varied in a more complex way? Take, for example,
Figure 4.14. This might be a varying force of friction as a box is
dragged over different surfaces.

Remember the area under the line is still equal to the work done.
But how do we calculate it?

In order to determine the area under the line we need to count the
squares under the line and then use this to calculate the work done.

Take a small square under the line and calculate the area of this
square. For example, if the square is 20 N high and 0.1 m across the
area is equal to:

* areaof one square =20 N x 0.1 m

* area of one square =2 J.

Grade 9

DID YOU KNOW?

You could use some
powerful mathematics
called calculus to determine
the area under the line.
Newton invented this kind
of mathematics to help him
solve complex problems
relating to the motion of
objects.

Think about this...

Hooke’s law produces a graph
very similar to Figure 4.12.
In fact the area under the
line in this case represents
the work done on the spring.
That is, the energy stored by
the spring. You can work out
the energy stored using the
equation W = %FAx.

Force /N

Distance moved against force /m

Figure 4.14 A graph showing a
force that changes in a complex
way as distance increases

Force /N

LN

Distance moved against force /m
Figure 4.15 No matter how
complex the force vs. distance
moved graph, the area under the
line is still equal to the work done.
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0.1m

20N 24

Figure 4.16 The area of one
square represents a small amount
of the total work done.

This small square represents 2 ] of work done. We need to count up
all the squares and then multiply this by 2 ] to determine the total
work done. For example, if there are 100 squares the total work
done would be: -

* total work done = number of squares x work done for each
square

* total work done =100 x 2] =200]7.
If there were 500 squares the total work done would be 1000 ], etc.

You must be careful when counting the squares. You need to make a
few estimations near the line. For example:

0.5'm
10N I:I Each squares.= 10N x056m=5J

Force /N
2 sguares

£
/

1.5 squares

|
N

1 square

-+—— 8 squares

~-——78 squares

Distance moved against force /m

Figure 4,17 Counting the squares often involves some estimation close
to the line.

In Figure 4.17 there are a total of 90.5 squares. We have had to
estimate some of those near the line. The three small red areas
add up to one complete square, the four green areas add up to two
squares, etc.

In this case the total work done is equal to:

* total work done = number of squares x work done for each
square

* total work done =90.5x 5]
* total work done = 452.5 ] (approximately 450 J).

Although this is only an approximate value if you are careful
counting the squares you will get very close to the true value of the
work done.

Grade 9
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+W or -W?

Work may be expressed as a positive or negative value. Remember,
work is a scalar quantity and the opposite sign does not mean the
opposite direction.

Instead, whether the work is positive or negative depends on
whether or not the object gains or loses energy.

In both cases in Figure 4.18 the work done is 500 J. In the first case
we can say work is done on the box. It gains 500 ] of energy.

In the second case the box loses 500 ] of energy. We can express this
as —500 ] or we could say the work done by the box is 500 J.

In this section you have learnt that:
® Work done is another way of saying energy transferred.

® Mechanical work is done whenever you move a force through
a distance.

¢ The work done may be found using the equation:
W=Fscos9

e Work done may be positive or negative depending on
whether the object in question gains or loses energy.

Review questions

1. Explain the meaning of the term work done and glve an
example of where work is done.

o

Calculate the total work don__e in the following examples:
a) A 20 kg log lifted 2 m into the air
b) Thirty 6 kg boxes lifted onto a shelf 1.5 m high

c) A car of mass 1400 kg pushed 50m along a road
(ykmetzc 3)

d) A concrete slab of mass 200 kg pulled 10 m up a slope at an
angle of 30° to the horizental (y,,,,,. = 0.6).

»

Describe in detail how you would determine the work done by
a varying force.

-

Explain the dlfference between positive and negative work
done.

Grade 9

10m

<____'__________.>

50 N

P

Figure 4.18 Work being done on
or by a moving box

negative less than zero

positive greater than zero
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Figure 4.19 It takes energy to
play football.

DID YOU KNOW?

A common definition for
energy is capacity to do
work. The more energy an
object has the more work

it can do! The term energy
comes from the Greek word
‘energeia’ meaning activity
or operation.

Can you give examples

of where you might come
across each of the forms of
energy listed in Table 4.17

-

forms types

motion the act of moving or
the way an object moves

4.2 Work-energy theorem

By the end of this section you should be able to:
® Explain the relationship between work and energy.

e Derive the relationship between work and kinetic energy
and use this to solve problems.

e Show the relationship between work and potential energy
as W = -AU and use this to solve problems.

e Describe gravitational potential energy and elastic potential
energy.

¢ Explain mechanical energy as the sum of kinetic and
potential energy.

Energy vs. work?

Energy and work are really just different ways of looking at the same
thing. The energy of an object is a mathematical representation of
the amount of work an object can do. Whereas work is any energy
transferred to-or from the object; energy refers to the total amount
of work the object could theoretically do. In algebraic terms:

* AE=W
Both energy and work are scalar quantities measured in joules.

Forms of energy

There are several different forms of energy. These include:

Table 4.1 Different types of energy

Kinetic energy Gravitational potential energy

Elastic potential energy
(strain)

Heat energy

Sound energy Chemical energy

Electromagnetic energy (light) | Nuclear energy

Electrical energy

The forms of energy on the left hand side of Table 4.1 are all
energies associated with a kind of movement, whereas the forms
of energy on the right are all to do with storing energy due to the
particular arrangement of objects. Remember, all forms of energy
are scalar quantities measured in joules.

Kinetic energy

Any object in motion has a kinetic energy (E,). The amount of
energy depends on the mass of the moving object and how fast it is
travelling. Kinetic energy is calculated using the equation below:

* Kkinetic energy = Yamv?

Grade 9
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llii(;feeé(jgrllzl:, a g;r of mass 1000 kg travelling at 12 m/s will have a Activity 4.2: Kinetic
gy ot energy of a car

_ o .

E ='.mv* State principle or equation to be used Determine the kinetic energy

E, =" x 1000 kg x (12 m/s)* Substitute in known values and complete of the car used in the
calculation worked example if it were

E =72000] or 72 K] Clearly state the answer with unit travelling firstly at 16 m/s
and then at 24 m/s.

An object with double the mass travelling at the same speed will
have twice the kinetic energy. Mass and kinetic energy are directly
proportional. However, if you double the velocity of an object its
kinetic energy will increase by a factor of four (22). This relationship
is not directly proportional; instead E, is directly proportional to v*.
If the velocity increases by a factor of five the E, will increase by a
factor of 25 (52).

— —l —————
v=10 m/s v=10 m/s v=20 m/s
E,=60 000 J E,=120 000 J E,=240.000J

Figure 4.20 The effect of mass
Car: M 1200 k Car: M 2400 k Car: M 1200 k , 3 . .
S S Bl and velocity on the kinetic
S B energy of an object

Why does E, = Yamv??

This equation comes from combining Newton’s first and second
laws of motion and one of the equations for constant acceleration.

Part of the work-energy theorem states:

* If an external force acts upon an object it will cause its kinetic & i
energy to change from E, to E,,. The net work done on a' body —
equals its change in kinetic energy. Figure 4.21 All moving objects

This statement should make sense: Work done is energy transferred. 1ave kinetic energy. In this picture
If a resultant force is applied to an object it will accelerate (Newton’s the aircraft has the most E,.

first law). As a result it will change its kinetic energy and this change

will be equal to the energy transferred (or work done).

In terms of equations we have; _ Think about this...
* Work done = change in kinetic energy Because f:-k v the velocity
© W=AE =E_-E, of a moving car has a

significant impact on its

* W=Yemy?-Vamy? stopping distance. Travelling

* W=Ymv}2-v?) £ at 50 km/h it may take 25 m
This does not show where E, = % m1? comes from; however, we can to stop (depending on road
derive this equation another way to show that it is valid. conditions, etc). Double that,

travelling at 100 km/h and it
takes a massive 75 m to stop,
much more than double the
distance. This is because the
brakes have to do more than
double the work (as there is
more than double the £, and
s so the force has to act over a
much greater distance).

Figure 4.22 Deriving E, = Ysmv*

Grade 9
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Worked example

A car of mass 800 kg is travelling at 12 m/s. The car
accelerates over a distance of 240 m. The net force
causing this acceleration is 200 N. Determine the
work done on the car and its final velocity.

W = F s State principle or equation to be used
(definition of mechanical work)

W =200 N x 240 m Substitute in known values and
complete calculation

W =48 000 J Clearly state the answer with unit

You can calculate the final velocity in a number of
different ways (including use one of the equations
of constant acceleration). In this case we will use:

W=1%m(v* - u?)

2 W/ m=v?—-u? Rearrange equation to give v* — u? on
right hand side

vi= (2 W/ m) + u? Rearrange equation to make v’ the
subject

V¥ =(2x48000J /800 kg) + (12 m/s)? Substitute in

known values and complete calculation for v*

Vv¥= 264 Solve for v? then take the square root to
complete

v=16 m/s Clearly state the answer with unit

Starting from Newton’s second law:

* F =ma

Our defining equation for work done:

* W=Fs

So we could substitute in for F and we get:
* W=mas

From the equations of constant
acceleration we have:

* Vv =u’+2as
This can be written as:
s as=W-u?)/2

Combining this'with our previous equation
we get:

* W=mW-u?)t2
Or
s W=%Ym( - u?).

Check the final velocity in
the worked example using
one of the equations of
constant acceleration.

KEY WORDS

potential energy

the ability of an object to do
work as a result of its relative
position

stored energy the potential
ability of an object to do
work as a result of its relative
position or shape change

Potential energies

As previously mentioned the second column in our table of
energies contains some different kinds of potential energy. They
are effectively stored energies. They are all due the particular
organisation or position of parts of the object/system of objects. The
potential energy of an object is usually given the symbol U.

* Potential energy = U

If an object has a potential energy it can be thought of as storing
some energy. This energy has the potential to do some work, i.e. the
potential energy might be transformed into another form of energy
and so work would be done (remember work done is just another
way of saying energy has been transferred).

Imagine an object has a potential energy of 1000 J. If this object did
300 J of work then the potential energy remaining after the work
has been done will be 700 J. In other words:

* Work done by object = drop in potential energy of object
Or in symbols:

© W=-AU
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Equally, if work is done on the object then its potential energy
might increase (it is also fair to say its kinetic energy may also
increase). This is really just another way of saying work done is
equal to the energy transferred; we just need to think carefully
about where that energy has come from.

Gravitational potential energy

Perhaps the most common potential energy is gravitational
potential energy (GPE). Any object with mass in a gravitational
field has a GPE. How much GPE depends on three factors, its mass,
the gravitational field strength (g) and its position in the field.

We usually deal with GPE with reference to the surface of the Earth.
Therefore, on the ground an object has 0 ] of GPE.

* Gravitational potential energy = mgh
m = mass in kg.

g = gravitational field strength (on Earth this is 10 N/kg or more
precisely 9.81 N/kg). /

h = height above the ground.

For example, an object of mass 30 kg at a height of 12 m has a GPE
equal to:

GPE = mgh State principle or equation to be used.

GPE =30 kg x 10 N/kg x 12 m Substitute in known values and
complete calculation

GPE =3600] Clearly state the answer with unit

An object with double the mass at the same height above the
ground will have twice the GPE. Equally, an object twice as high
above the ground will have double the GPE. Mass and height above
the ground are both directly proportlonal to the’GPE of the object.

h=10'm - -
; h=5m
Book Mass 2 kg Book Mass 4 kg

Gain'in GPE = 100 J Gain in GPE = 200 J

A

h=5m

Book Mass 2 kg

Gain in GPE = 200 J

Figure 4.24 The effect of mass and height above the ground on the
GPE of an object

If you think about when you do work by lifting up an object, you are
transferring GPE to the object you are lifting. Looking back at the
equations we can see they are both saying the same thing.

Grade 9
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Figure 4.23 Factors affecting the
GPE of an object

Activity 4.4: Calculating
GPE

How high above the ground
would a 10 kg object need
to be to have the same GPE
as the 30 kg object in the
example?

Think about this...

If an object has 0 J when on
the ground how much GPE
will an object have at the
bottom of a well? It takes
energy to lift the object out
of the well. Work is done on
the object and it gains energy
to end up with 0 J. This must
mean the GPE at the bottom
of the well is less than 0 J. It
must be a negative number!
This is often referred to as a
potential well.

KEY WORDS

gravitational field the space
around an object in which the
object’s gravitational effect
can be felt

gravitational potential
energy the energy an object
has due to its relative position
above the ground
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Figure 4.25 A child’s spring toy
stores EPE.
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Figure 4.26 Factors affecting the
EPE of an object

Activity 4.5: Energy
stored in a spring

Determine the energy stored
in a spring that has a spring
contact of 15 N/m and is
extended by 20 cm.

Figure 4.27 An aircraft flying
through the air has both kinetic
and potential energy.
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* W =wxh
gravity

* GPE =mgh

The energy gained by the mass (or the work done on the mass)
is equal to weight multiplied by the vertical distance moved (the
height above the ground). - ,

Elastic potential energy

Another common potential energy is elastic potential energy
(EPE), sometimes called strain energy. This is the energy associated
with any object that has been stretched or compressed. Think
about compressing a spring in a toy; it will store energy, which it
converts into kinetic energy as it bounces. :

The amount of EPE stored in the spring depends on the force
applied and the distance:moved (i.e. the extension of the spring).
Think back to the Hooke’s law force vs. extension graphs studied
in Unit 3. The area under the line is equal to the work done on the
spring. This gives us the equation for EPE:

* Elastic potential enérgy =% FAx
F = force in N.
Ax = extension of spring in m.

For example, if a force of 100 N causes a spring to extend by 40 cm
the energy stored in the spring will be equal to:

EPE =% F Ax State principle or equation to be used

EPE =% x 100 N x.0.4 m Substitute in known values and complete
calculation

EPE =207 Clearly state the answer with unit

There is an alternative equation for EPE that includes the spring
constant of the spring rather than the force applied. From Hooke’s
law

* F=kAx
We can combine this with our equation for EPE and we get:

* Elastic potential energy = % k Ax Ax

s Elastic potential energy = % k Ax?

Total energies and energy changes

The total mechanical energy of a system is the sum of all the
possible kinetic and potential energies.

¢ Total mechanical energy = Xkinetic energy + Zpotential
energy

* Total mechanical energy = XE, + £U

An aircraft cruising at 10 000 m will have a both a kinetic energy (as
it is moving) and a potential energy (in this case GPE as it is above
the ground). Its total mechanical energy will be its E, + GPE.
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In this section you have learn that:

e When an object does work, the work done is equal to the
change in energy of the object. W = AE. Or W = -AU if there
is change in potential energy.

® Any moving object has a kinetic energy given by
E, = "%mv’.

e Potential energies are ‘stored energies. For example, GPE and
EPE.

® GPE = mgh and EPE = Y2FAx (or Y2kAx?).

¢ The total mechanical energy of an object is given by the sum
of its kinetic and potential energies.

Review questions

1. Use the work-energy theorem (W = AE) to show how
W="%mv,-v?).

2. Calculate the kinetic energy of the following objects:
a) a75kghuman running at 8 m/s
b) a3 gbullet travelling at 400 m/s
c) acar of mass 1200 kg that travels 60 min 3 s.

3. Explain what is meant by the term potential energy and give
four different examples of potential energies.

4. Calculate:
a) the GPE of a 15 kg wooden block 6 mabove the ground

b) the height of the wooden block if it were to have a GPE of
300 J. /

5. Calculate the energy stored in a spring when it is compressed
5 mm by a 60 N force. '

6. Determine the mechanical energy of a bird of mass 200 g flying
at 12 m/s at a height of 50 m above the ground.

4.3 Conservation of energy

By the end of this section you should be able to:
e State the law of conservation of mechanical energy.

® Revise the term collision and distinguish between elastic
and inelastic collisions.

Grade 9

Think about this...

Heat is another form of
energy. The aircraft will also
contain a certain amount of
heat energy. However, this
does not count towards its
mechanical energy. More on
heat in Unit 7.

KEY WORDS [§

compressed pressed or
squeezed into a smaller space

elastic potential energy the
energy stored in a spring as a
result of it being stretched or
compressed

stretched made longer or
wider by the application of
force
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Figure 4.28 A burning candle
transforms chemical energy into
heat and light energy.

=

-
——

Figure 4.29 Filament bulbs
‘waste’ quite a lot of energy as
heat.

DID YOU KNOW?

The term closed system
refers to a situation where
objects are isolated from
their wider surroundings. It
is an idealised enironment
as the only totally closed
system in the universe
itself!

Think about this...

In reality the block will hit
the ground with just less than
500 J of kinetic energy. What
would have happened to the
rest of the energy?
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e Solve problems involving inelastic collisions in one
dimension using the laws of conservation of mechanical
energy and momentum.

¢ Explain the energy changes that take place in an oscillating
pendulum and an oscillating spring-mass system.

e Describe the use of energy resources including, wind
energy, solar energy and geothermal energy.

¢ Explain the meaning of the term renewable energy.

The law of conservation of energy

Perhaps the most important idea in all of physics, the law of
conservation of energy, states:

* 'The total energy of a closed system must remain constant.

In essence this means energy cannot be created or destroyed only
transferred from one place to another or transformed from one type
to another. The energy has been conserved; it has not changed in
value.

For example, when a candle burns we might say it ‘gives out” heat
and light. What we really mean to say is that the chemical energy

in the candle is transformed into heat and light. The energy has not
been created just transformed. Importantly, the amount of each type
of energy must balance. If 200 J of chemical energy was converted
into heat and light then there must be 200 J of heat and light energy,
not 198 J or 202 ], exactly 200 J! Energy cannot be created or
destroyed.

We often use terms like ‘wasted energy’ or ‘lost energy’ and

we might say ‘it’s run out of energy’. In these cases we mean
transformed into a form we don't need or can’'t use. Most energy is
eventually transformed into heat. This is often wasted as it is not
used by the device but transferred to the surroundings; the energy
has not been destroyed.

Lets think about what happens to the potential energy of a 5.0 kg
mass when it is dropped from a height of 10 m. The total energy
of a system must stay the same, but as the mass falls it ‘loses” GPE.
This GPE is converted into other forms. If we assume that the air
resistance is negligible then the GPE will be converted into kinetic
energy. The further it falls the faster is goes and the higher its
kinetic energy.

Throughout the drop the total mechanical energy will be
500 J. When the mass hits the floor the kinetic energy will then be
converted into 500 J of heat and sound energy.
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Kinetic energy and momentum

Kinetic energy and linear momentum are two quantities that are
very closely related. They both relate to moving objects with mass
and both increase if the mass and/or the velocity of the objects
increase, but not by the same proportion.

There are a few other important differences. Table 4.2 summarises

some of the key points about kinetic energy and linear momentum.

Table 4.2 Comparing linear momentum and kinetic energy

Momentum Kinetic energy

Unit kg m/s J
Type of quantity Vector Scalar
Equation p=mv E = Ymv?
Effect if mass doubles Doubles Doubles
Effect if velocity doubles | Doubles Quadruples

(2°=4)
Conserved in collisions Yes, always Possibly, but not
as long as no external always
force acts

v=10m/s v=10m/s v=20 m/s

Car: Mass 1200kg

N\

E, =60 000J

Car: Mass 2400kg

AN

E,=120 000J
P=24.000 kgm/s

Car: Mass 1200kg

Eyx=240 000J

P=12 000 kgm/s P=24 000 kgm/s

Figure 4.31 The effect of changing mass and velocity on momentum
and kinetic energy

Look carefully at Figure 4.31. You can see that both momentum and

kinetic energy are directly proportional to the mass of the moving
object. Double the mass and both the momentum and the kinetic
energy double. However, if the velocity doubles, the momentum
doubles, but the kinetic energy goes up by four.

Elastic and inelastic collisions

Energy and momentum are two factors that are always conserved
in collisions between objects. However, the energy may be
transformed (for example, into heat and sound) and as a result the
kinetic energy may not always be conserved.

We briefly looked at elastic and inelastic collisions in Unit 3. In
an elastic collision the kinetic energy is conserved. In an inelastic
collision the kinetic energy is not conserved.
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GPE =500 J
i E=0

GPE=250J

10m E,=250J

] ) \GPE=0J
] \ E,=500J

<= = e e o mm Em o Em = o = Em Em =

Figure 4.30 As an object falls
GPE is transformed into E,.

Describe all the energy
changes when a football is
dropped onto the ground.
Why does the ball not return
to its original height?

Calculate the kinetic energy
and momentum of a mass
of 10 kg travelling first at 6
m/s then at 12 m/s. Repeat
for a mass of 20 kg.

KEY WORDS

conserved neither increased
nor destroyed

closed system a situation
where objects are isolated
from their environment

law of conservation of
energy law stating that
energy cannot be created or
destroyed but is converted
from one type to another
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Before collision
—_—

5m/s 0m/s

Ball A Ball B
. -
After collision 0m/s 5m/s
Ball A BallB

Figure 4.32 A perfectly elastic
collision

Show that both kinetic
energy and momentum are
conserved in the collision
shown in Figure 4.33.
(Remember, momentum is
a vector quantity, whereas
kinetic energy is a scalar.).

Before collision
— ~—

9m/s 9m/s

Ball A Ball B

After collision

~— —
3m/s 15 m/s

Ball A Ball B

Figure 4.33 Is this an elastic
collision?

Before collision

—
5mls 0mfs
Ball A Ball B
After collision 2m/s 6 m/s
Ball A Ball B

Figure 4.34 An inelastic collision
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For example, Figure 4.32 shows a perfectly elastic collision. Both
kinetic energy and momentum are conserved.

Momentum before = m, v, + m v, = (2.0 kg x 5 m/s) + (2.0 kg
x 0 m/s) = 10 kg m/s — Calculate momentum before as sum of
momentum of A and momentum of B

Momentum after = m,v, + m v, = (2.0 kg x0 m/s) + (2.0 kg x 5
m/s) = 10 kg m/s — Calculate momentum after.as sum of momentum
of A and momentum of B

* Momentum before = momentum after; momentum has been
conserved.

Kinetic energy before = Yam, v 2+ Yamw > = (0.5 x 2.0'kg x (5 m/s)?)
+ (0.5 x 2.0 kg x (0 m/s)?) = 25 ] Calculate kinetic energy before as
sum of KE,of Aland KE of B

Kinetic energy after = Yam v, >+ %am v,* = (0.5 x 2.0 kg x (0 m/s)*)
+ (0.5 x 2.0 kg x (5 m/s)?) =25] Calculate kinetic energy after as sum
of KE-of A and KE of B

* Kinetic energy before = kinetic energy after; kinetic energy has
been conserved and therefore it is a perfectly elastic collision.

Momentum is always conserved but kinetic energy is not. Figure
4.34 shows an example of an inelastic collision.

Momentum before = m v, + m.v, = (4.0 kg x 5 m/s) + (2.0 kg
x 0m/s).= 20 kg m/s —  Calculate momentum before as sum of
momentum of A and momentum of B

Momentum after = m,v, + m v, = (4.0 kg x 2 m/s) + (2.0 kg x 6
m/s) = 20 kg m/s — Calculate momentum after as sum of momentum
of A and momentum of B

* Momentum before = momentum after; momentum has been
conserved.

Kinetic energy before = Yam, v > + Yam v > = (0.5 x 4.0 kg x (5 m/s)?)
+ (0.5 x 2.0 kg x (0 m/s)*) =50 ] Calculate kinetic energy before as
sum of KE of A and KE of B

Kinetic energy after = Yam,v > + Yam,v,> = (0.5 x 4.0 kg x (2 m/s)?)
+(0.5 x 2.0 kg x (6 m/s)?) =44 ] Calculate kinetic energy after as sum
of KE of A and KE of B

* Kinetic energy before > kinetic energy after; kinetic energy
has been lost and therefore it is not a perfectly elastic collision.

In this example 6 ] has been converted into heat and sound and so
kinetic energy is not conserved and the collision is not perfectly
elastic.

Energy in oscillating systems

We have seen that when an object falls its GPE is converted into
kinetic energy. The same is true if you throw an object into the air.
Here the kinetic energy is transformed into GPE as it rises.
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In oscillating systems kinetic energy is continuously being
transformed into potential energy and vice versa. If there are no
energy losses (e.g. no losses as heat) then the total mechanical
energy will stay the same and this process will go on forever!

Take, for example, a pendulum as it swings.

As it is lifted to A the pendulum gains GPE. It is then released and

the gain in GPE is converted into E,. At B it is travelling fastest, it A
has the most E, but also the lowest GPE. It then rises to C, losing E,

and gaining GPE as it does so. Figure 4.36 shows how the potential
energy and kinetic change over time. B

From the graph you can see that the total mechanical energy stays Figure 4.35 A simple pendulum
the same. As the potential energy falls the kinetic energy increases  ‘transforms GPE into E,_and then

and vice versa. back again.
* The total mechanical energy = kinetic energy + potential
energy Energy 1 /Total Energy

Another example of an oscillating system is a mass—spring system.
In simple terms this is just a mass on the end of a spring. However, \ _
the suspension in a car is a more complex example of a mass—spring g]’:;gf,
system.

: . . . Potential
In this case the potential energy may not be GPE, instead it may be Energy
EPE.

= o

Time /s

Figure 4.36 Graph showing how
the potential energy and kinetic
energy of oscillating systems are
N related

Figure 4.37 An example of a mass-spring system

As the spring is compressed the EPE increases and the mass slows
down (its E, decreases). Eventually the mass will stop; at this
point the EPE is at its maximum and the E, is zero. The mass then
accelerates as EPE is converted into E,. This process continues.

A more complex example might be a mass—spring system oscillating
vertically like the one shown in Figure 4.38.

In this case the kinetic energy is changed into GPE and EPE. In any
case the total mechanical energy of the system remains then same.

Energy resources
Figure 4.38 A vertically

Every country demands a huge amount of energy, from fuel to . .
oscillating mass-spring system

run cars and other vehicles, to gas for cooking and heating and, of
course, electrical energy. A source of energy that may be used by a
country or individuals within that country is commonly referred
to as an energy resource. Energy resources are very precious
commodities, perhaps the most obvious being oil.

energy resource a source of

energy that can be used by a
Selecting which energy resources to use is often a very difficult country or its population

decision. There are lots of factors to consider, chief among them
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Figure 4.39 A simple generator

Think about this...

Remember energy cannot be
created or destroyed, so when
we talk about generating
energy we really mean
converting it from one form
into electrical energy.

Figure 4.40 An example of a
coal-fired power station

KEY WORDS

fossil fuels fuels that are
produced by the action of
high temperature and pressure
on organic materials over
millions of years

renewable resource an
energy resource that does not
involve a fuel that will run out
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being the availability of the resource, the economics involved and
the subsequent environmental impact (more on this later).

Energy resources are often used to generate electricity. Electricity is
exceptionally useful as it is quite simple to transfer a vast amount of
energy from one place to another (all you need is a suitable wire!)
and it can be easily transformed into most other forms of energy.
Most methods of electricity generation involve a rotating turbine:
This turbine turns a generator (a magnet or series of magnets inside
coils of wire). This generator converts kinetic energy into electrical
energy.

Globally the most common method for generating electricity
involves the burning of fossil fuels such as coal, oil and natural gas.
The chemical energy contained within these fuelsis released as heat
(through burning), this heat is.used to turn‘water into steam, this
steam then turns a turbine to generate electricity. Large fossil fuel
power stations can generate up to 4 billion joules per second!

However, such a global reliance on fossil fuels is problematic for two
main reasons.

* Fossil fuels are a finite energy resource. Eventually we will run
out of coal, oil and natural gas.

* Burning fossil fuels produces several atmospheric pollutants,
including sulphur dioxide and perhaps more worryingly, carbon
dioxide. Carbon dioxide (CQO,) is a powerful greenhouse gas. It is
thought the increase in CO, output is a significant factor in man-
made global warming, heating up the entire planet and leading
to dramatic changes to weather and climate.

Ethiopia has few proven fossil fuel resources. However, some people
estimate that there is considerable potential for oil and natural gas
exploration in the future.

In a nuclear power station uranium is used as a fuel. Inside the
reactor there is a complex nuclear reaction (fission - splitting the
atom). This process generates heat, which is used to turn water
tosteam, etc. The only real difference between a nuclear power
station and a coal-fired one is the method for generating the heat.
In a nuclear reactor a great deal of heat can be produced per kg
of uranium, and so nuclear plants can generate vast amounts of
electricity. As no fuel is ‘burnt’ there are no greenhouse gases
produced; however, this process produces radioactive waste. This
waste will remain dangerous for millions of years.

Renewable energy resources

Resources that do not involve a fuel that will eventually run out are
referred to as renewable. Table 4.3 includes a selection of some of
the forms of renewable energy resources. This is not a definitive
list; other forms include tidal (energy from tidal movements), wave
(energy from water waves) and biomass (burning organic matter
specifically grown for the task).
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Table 4.3 Comparison of some renewable energy resources

Type

Description

Positives

Negatives

Wind

The Sun heats the
Earth’s surface. This
heating is uneven and
so creates convection
currents. This leads
to areas of higher and
lower pressure and
wind moves between
them. The wind turns
large turbines and this
generates electricity.

Relatively inexpensive -
just running costs.

Does not produce any
greenhouse gases.

Not a consistent supply.
When there is no wind
there is no electricity
generated.

A large number of
turbines are needed to
generate a significant
amount of power.

Geothermal

Heat from processes
inside the Earth is
used to turn water
into steam. Water is
pumped down into
‘hotspots’ in the
Earth’s crust. It is
turned to steam and
this steam is used
to turn turbines to
generate electricity.

Only small amount of
greenhouse gases are
released (due to gases
trapped inside the Earth
being released in the
process).

Can generate a
significant amount of
power.

Only certain locations
are suitable for
geothermal power plants
(see next section).

Initial construction can
be expensive.

e

Falling water turns
turbines to generate
electricity. In order
to provide a sufficient
drop in height large
dams are often
constructed. The water
builds up behind

the dam and is then
released through
turbines.

Only a small amount of
greenhouse house gases
are produced.

Very large amounts of
energy can be generated
with relatively small
running costs.

Hydroelectric plants
tend to have longer
lives than thermal power
stations.

Construction of large
dams can damage the
local environment. This
may affect a significant
number of the local
inhabitants (animal and
human).

Initial construction can
be very expensive and is
limited to only certain
sites.

Generation may be
affected by extended
droughts.

Solar (photovoltaic)

The first type of
solar power converts
the energy in
sunlight directly into
electrical energy (via
photovoltaic cells).

No greenhouse gases.

Very low running costs.

Construction often
involves the use of a
large quantity of toxic
materials.

Photovoltaic cells remain
very expensive.

Only a relatively small
amount of energy is
generated per km?.
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Type

Description

Positives Negatives

Solar (concentrating
solar power)

The second type of
solar power involves
using carefully aligned
mirrors to focus the
sunlight onto a boiler.

The heat turns water
to steam and this
turns a turbine.

Mirrors need to be very
carefully aligned.

Generates more
energy per km? than

photovoltaics. Sophisticated technology

is needed to ensure they
track the Sun as it moves
across the sky.

No greenhouse gases are
produced.

Discuss with a partner
where the energy utilised by
different energy resources
ultimately came from. (Hint:
you may need to go back
several billion years for most
of them!)

Hydro-electric power plant
d P ® In operation
SUDAN o, @® Under construction

@ potential future construction

ETHIOPIA

SUDAN ¥

SOMALIA

UGANDA ', *< Mogadishu

KENYA

INDIAN
OCEAN

Figure 4.42 The location of
hydroelectric power plants
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Energy in Ethiopia

In 2008 as a country we generated just over 1,x 10'°J (10 000 000
000 000 000 J!!) of electrical energy: At the time of writing around
nearly all of our electricity generation comes from hydroelectric

power.
Electricity generation byfuel

Ethiopia
3500 R

3000

2500

2000
GWh

1500

1000

1981 1986 1991 1996 2001 2006

0
1971

1976

Comb, renew, & waste M Geothermal/solar/wind

M Coal/peat M Oil WM Gas ' Nuclear W Hydro

Figure 4.41 This graph shows the amount of electricity generated per
resource.

As part of the country’s general development plan, with the aim of
expanding the Electric Power generation capacity, the Tekeze, Gilgel
Gibe II and Tana Beles power plants with respective generating
capacities of 300MW, 184MW and 460MW became operational in
2009 and 2010.

Reliance on hydroelectric power has advantages and disadvantages,
as listed in Table 4.3. Ethiopia can diversify its electricity

sources by exploiting its geothermal (> 5000 MW) and wind

(>10 000MW ) electricity generating Potential. Figure 4.42

shows the location of several hydroelectric power plants. Ethiopia

is among only a few African countries with the potential for
significant energy generation to come from geothermal wind power.
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The enormous Three Gorges
Dam in China can generate
22.5 GW of power. That’s
22.5 billion joules per
second! If running at full
output this colossal project
could generate the entire
yearly output from Ethiopia
in just over 5 days!

In this section you have learnt that:

¢ The law of conservation of energy states that energy cannot
be created or destroyed, just converted from one type to
another.

¢ In elastic collisions both kinetic energy and linear
momentum are conserved. In an inelastic collision only
momentum is conserved.

¢ In oscillating systems (such as simple pendulum or mass—
spring systems) potential energy is continuously transformed
into kinetic energy and back again.

® A renewable energy resource is one that does not involve a
fuel that will eventually run out.

e Wind, solar, geothermal and hydroelectric energy resources
all offer significant benefits; however, they each have their
drawbacks.

Review questions

1. State the law of conservation of energy and explain why it is not
correct to describe energy as being lost.

2. Use the principle of conservation of momentum to determine
if the collision in Figure 4.44 is elastic or inelastic. If inelastic,
calculate the amount of energy converted into heat and sound. Figure 4.43 The rift valley offers

3. Describe the energy changesas a pendulum swings. If the significant geothermal potential.
pendulum has a mass of 50 g and is lifted so that it has a GPE of
0.1 J calculate: s N

Before collision

a) its increase in height - 0 mjs
b) the velocity of the bob as it passes through the bottom of
the swing (assume no'energy losses). @ @
. Ball A Ball B
4. Explain what is meant by the term renewable energy resource
and give three examples. - After collsion 2mis 7 mis
5. Describe how hydroelectric power may be used to generate
electricity. Include the advantages and disadvantages of using Ball A Ball B
this resource. Figure 4.44 What type of
collision?
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KEY WORDS

per second a measurement of
rate

power the rate of doing work
watt the unit of power

kilowatt-hour a unit of
energy

Think about this...

Technically the equation is
for average power. However,
if the rate of doing work is
constant (for example, if the
force you are working against
and the speed of movement
both remain constant) then
the average power is the same
as the actual power.

DID YOU KNOW?

The watt is named after
the Scotsman James Watt.
He was instrumental in
the engineering of the late
18th century. In particular
his developments on steam
engines are widely credited
to have brought about the
industrial revolution.
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4.4 Mechanical power

By the end of this section you should be able to:
e Solve problems relating to the definition of power.
e Show that the kWh is also a unit of work.

® Express the formula of mechanical power in terms of
average velocity.

What is power?

Power, like work, is another term that is frequently used in
everyday language. It’s a term that is often misused when maybe
energy or velocity would be more appropriate.

In physics power has a very specific definition.
* Power is the rate of doing work:

As discussed in Unit 2, rate means per second. In other words,
power is the work done per second. A greater power means more
work is done per second or more energy is transferred per second.

Imagine two cars racing up a hill. If the cars have exactly the same
mass, when they reach the top of the hill they would both have done
the same amount of work: However, the more powerful car will be
the winner (the one that can do the most work per second) as it will
get to the top of the hill first!

An equation for average power is:

* Power = work done / time taken
* P=W/t

P = average power in W.

W = work done in J.

t = time in s.

Power is measured in watts (or kilowatts, etc). As energy is in joules
and time in seconds, 1 watt is equal to 1 joule per second. A 4.0 kW
motor can do 4000 J of work per second. The watt is the SI derived
unit of power.

For example, a kettle uses 168 000 J of electrical energy in two
minutes. Its average power can be found using the equation:

P = W/t State principle or equation to be used (definition of power)
In this case the time taken is two minutes, which is 120 s.

P=168000]/120s Substitute in known values and complete
calculation

P =1400 W or 1.4 kW Clearly state the answer with unit
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If the same kettle were to run for five minutes how much work
would the kettle do?

* P = W/t State principle or equation to be used (definition of power)
* W =P xt Rearrange equation to make W the subject

In this case the time taken is five minutes, which is 300 s and
P=1400 W

* W =1400 W x 300 s Substitute in known values and complete
calculation

* W =420000] or 420 k] Clearly state the answer with unit

This work would be transferred to the water and surroundings as
heat energy.

You do work when you run up stairs, because you have to move
your weight upwards. The faster you run, the greater your
power.

¢ Weigh a volunteer student.

e Use a stopwatch to measure the time the student takes to
run up a flight of stairs.

¢ Count the number of stairs. Measure the vertical height of
one stair, and calculate the total height of the stairs.

¢ C(alculate the work done (= weight x height).

¢ C(alculate the student’s power (= _work done_

time taken

The joule, the watt and other units

We have already mentioned the Joule as the standard unit of energy
and the watt as the unit of power.

However, a joule is quite a small unit. Lifting an apple around 1 m
in the air and you would do 1 ] of work. It's not much. When we
deal with large-scale energy usage, in particular electricity demands
and generation, an alternative unit is used.

The kilowatt-hour is an alternative unit of energy. It is the energy
transformed by a 1 kW-device in 1 hour. This means 1 kWh is
equivalent to 3.6 million J.

We can still use our equation for power but we must consider the
units carefully.

Grade 9

Figure 4.45 One ‘horsepower’ is
around 750 W.

Figure 4.46 Lifting an apple
around 1 m into the air transfers
about 1 ] of GPE to the apple.

Use the equation for power
to show that 1 kWh is equal
to 3.6 million J.

DID YOU KNOW?

The joule was named

after the English physicist
James Prescott Joule. He
was born on Christmas
Eve in 1818 and he has
been described by some
as the quintessential
physicist. He conducted a
series of incredibly precise
experiments that led to the
theory of conservation of
energy.
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Table 4.4 Comparing the joule and the kilowatt-hour

Joule Kilowatt-hour

e Work done = power x time e Work done = power x time
* [J]=[W]xIs] * [kWh] = [kW] x [h]

Work done in J Work done in kWh

Power in W Power in kW

Timein s Time in h

For example, how much work is done by a 500 W motor running
for 30 minutes?

In joules:

W =P x t State principle or equation to be used (definition of power in
terms of W)

In this case the time taken is 30 minutes, which:is 1800 s, and P =
500 W.

W =500 W x 1800 s Substitute in known'values and complete
calculation

W =900 000 ] or 900 k] Clearly state the answer with unit
In kilowatt-hours:

W = P x t State principle or equation to be used (definition of power in
terms of W)

In this case the time taken is 30 minutes, which is 0.5 hours, and P
= 500 W, which is 0.5 kW.

W =0.5 kW x 0.5 h' Substitute in known values and complete
calculation

W = 0.25 kWh :Clearly state the answer with unit
As well as the joule and kilowatt-hour, Table 4.5 lists some other
commonly used units of energy.

Table 4.5 Different energy units

Unit Application Equivalent value (J)
Electronvolt (eV) Sub-atomic particles and particle accelerators 1.6 x 107
Erg (erg) Using cm, grams and seconds instead of m, kg and s | 1.0 x 10~/
Kilocalorie (kcal) Energy contained within foods 4.2 x 10°
Kilowatt-hour Unit of energy used by electricity suppliers or when | 3.6 x 10°
(kWh) comparing large-scale energy demands (GWh is also

used).
Tonne of oil Another large-scale unit. It is the value of the 4,2 x 10
equivalent (toe) chemical energy contained within one tonne of crude

oil.
Megaton (MT) Nuclear weaponry; 1 MT is the energy released by 1 | 4.2 x 10%°

million tonnes of TNT exploding (the largest recorded

detonation was around 50 MT).
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Power and velocity

Imagine a car travelling along at a steady speed. Its engine is still
running and it is still using fuel but the kinetic energy of the car
is not changing. Where is the chemical energy going? It can’t be

destroyed.

For objects to move at steady speed through the air a force needs to
be applied. Remember, forces don’t make things move they make
them change the way they are moving. In the case of an object
moving through the air at a steady speed there must be no net
force acting on in it. The force from the engine must cancel out the
resistive forces of kinetic friction and air resistance (drag).

—————
Force from engine Resistive forces {drag + kinetic friction}

Car

Figure 4.47 For a car to move at a steady speed there must be a force
from the engine.

A force is being moved through a distance so work must be being
done, but this energy is not transferred into'the kinetic energy of
the car as this is constant.

Instead the energy is transferred into two places:
* Heat energy (road - due to friction)

* Kinetic energy (including sound) of the air. A very turbulent
wake is created behind the car.

If the engine is doing 4000 ] of work per second then 4000 J of
energy is transferred to the road and the air every second.

We can look at this process more mathematically by combining the
equations for mechanical work and power and we get:

* Power = work done / time

* Power = force x distance moved against force /time

* Average velocity = distance moved against force /time
So

* Power = force x velocity

* P=Fv

So, for a car to travel at .15 m/s against a force of 6000 N the power
from its engine needs to be:

* P=6000N x 15m/s
e P=90000W

This means the engine is converting 90 000 J of energy per second.

Grade 9

Think about this...

In reality the amount of
chemical energy from the fuel
will be more than 90 000 J as
the engine will not be 100%
efficient.
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Figure 4.48 A train travelling at
high speed does a great deal of
work against air resistance and
kinetic friction.
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Looking at it another way, in order for a train to travel at 20 m/s its
engine may have a power output of 800 000 W. This can be used to
determine the force from the engine and so the magnitude of the
resistive forces acting on the train.

P = Fv State principle or equation to be used _
F =P/ v Rearrange equation to make F the subject

F=2800000 W /20 m/s Substitute in known'values and complete
calculation

F =40 000 N Clearly state the answer with unit

In this section you have learnt that:

e Power is defined as the rate of doing work (power = work
done / time taken).

e Power is measured in watts (or kW) and 1 W is 1 joule per
second.

¢ The scientific unit of work/energy is the joule. However, other
units are commonly used, including the kilowatt-hour (kWh).

e For a moving object, P = Fv.

Review questions

1.~ What is the definition of power, state its units and give two
different equations for calculating the power of an object.

2. Calculate the power of the following:
a) amotor that does 24 000 J of work in two minutes
b) _acrane that lifts a 60 kg mass 100 m in 60 seconds.
3. Célcul_ate the work done in ] by the following:
a) a10 kW heater running for 15 minutes
b) two 100 W light bulbs on for 24 hours.
4. Recalculate the values in question 2, but this time express the
work done in kWh.
5. Derive P = Fv.
6. Determine the power output from an aircraft travelling at

200 m/s working against resistive forces of 1000 N.

End of unit questions

1. State the law of conservation of energy and describe a situation
where W = -AU could be used to illustrate this law.

2. Determine the work done when a forklift truck lifts a box of
mass 350 kg a height of 2 m.
3. Calculate the work done if a boulder of mass 100 kg is rolled

40 m up a slope at an angle of 20°. Assume the force of friction
is negligible.
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4. Asablock falls through the air by 40 m it does work equal to
—-1800 J. Determine the mass of the block.

5. Calculate the kinetic energy of a ball of mass 50 g travelling at
30 m/s. How much work will need to be done to stop the ball?

6. A mass of 2.0 kg is hung off a spring, which extends 2 cm.
Determine the energy stored in the spring.

7. A springisused to launch a ball vertically into the air. The spring
has a spring constant of 200 N/m and is compressed by
5 cm. A ball of mass 10 g is placed just above the spring. Calculate:

a) the energy stored in the spring

b) assuming the spring transfers all of its energy to the ball, the
velocity of the ball just as it launches

c) the height reached by the ball assuming all the E, is converted
into GPE.

8. Describe the energy changes in a mass—spring system thatis
oscillating horizontally. Explain how this changes if the system is
vibrating vertically.

9. An 8.0 kg ball travelling at 4 m/s collides head on with a 3 kg ball
travelling at 14 m/s. The balls bounce off each other and travel
back the way they came. The 8.0 kg ball travels away at
2 m/s. Calculate:

a) the velocity of the 3 kg ball after the collision
b) the kinetic energy before and after the collision.

c) State whether or not the collision is elastic and explain your
answer.

10. Summarise the advantages and disadvantages of using the
following energy resources to generate electricity:

a) coal
b) geothermal
¢) wind

11. A man raises 100 kg from the floor to a height of 2 min 2.5s.
What is the work done and the power developed?

12. A petrol engine raises 200 kg of water in a well from a depth of
7 m in 6 s. Show that the engine is developing about
2.33 kW of power.

13. It is proposed to use a small waterfall to turn an electricity
generator. 10 m® of water fall 50 m per minute. Only one-fifth
of its energy can be obtained usefully. Show that the water can
develop 16.7 kW.

14. 300 kg of water arelifted 10 m vertically in 5 s. Show that the work
done is 30 kJ and that the power is 6 kW.

15. Calculate the resistive forces acting on a sports car if it is travelling
at a steady speed of 25 m/s when the engine is providing 200 kW.
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Simple machines - Unit5

Section Learning competencies
5.1 Purposes of e Explain the purposes of a machine.
machines e List the types of simple machines.
(page 116) e Determine whether the machines are force multipliers, speed

multipliers or direction changers.

e Define the terms load, effort, work output, work input, mechanical
advantage (MA), velocity ratio (VR) and efficiency.

® Derive the expression of 1 = MA/VR from its definition.

5.2 Inclined plane, e Derive an expression for MA of an inclined plane with or without
wedge and screw friction.
(page 124) e (alculate MA, VR and efficiency of an inclined plane.
¢ (alculate MA, VR and efficiency of a wedge.
5.3 Levers e Determine the MA, VR and efficiency of a lever.
(page 128) e Identify the orders of a lever and give examples.
® Describe the use of a wheel and axle and determine MA, VR and

efficiency of a wheel and axle.

e Describe the use of gears.

e Describe different pulley systems and calculate MA, VR and
efficiency of a pulley system.

e Describe the use of a jackscrew.

Machines have made it possible for mankind to accomplish some
truly amazing things, from building the ancient pyramids of Egypt
to landing on the Moon. But it is not just these awe-inspiring
achievements. Simpler machines are used in everything from
cutting food and wood, to hanging a picture on the wall. Without
machines there is no way our relatively weak bodies could lift blocks
weighing thousands of newtons or even travel much faster than 5
m/s for long periods of time.

In 'this unit you will learn about what a machine is and why they
enable us to lift heavy loads or move large distances. We will
investigate the six classes of simple machines and learn about how
to determine their efficiency and what mechanical advantage they
offer us.

5.1 Purposes of machines

By the end of this section you should be able to:
e Explain the purposes of a machine.

e List the types of simple machines.
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e Determine whether the machines are force multipliers,
speed multipliers or direction changers.

e Define the terms load, effort, work output, work input,
mechanical advantage (MA), velocity ratio (VR) and
efficiency.

® Derive the expression of 1 = MA/VR from its definition.

What are simple machines?

You could probably list hundreds of different machines. These
might range from the vastly complex space shuttle, down to a
simple pair of scissors.

A machine is a device that is specially designed or engineered to
help make it easier to do mechanical work. Remember, from Unit 4
mechanical work is given by:

e W=Fs

W = work done in J.

F = force applied.

s = distance moved in the direction of the force.

A machine makes it easier to do work by performing one (or more)
of the following:

* increasing the magnitude of the applied force

* changing the direction of the applied force or transferring an
applied force from one place to another

* increasing the distance moved against the applied force (or the
speed the force moves).

No machine can create extra energy (that would break the law of
conservation of energy). In other words, the workiyou put in cannot
be greater than the work you get out. However, as you can see from
the list above it is possible to get more force out than you put in. We
need to think about this carefully.

When you apply a force to a machine this is referred to as the
effort. In order to do mechanical work you need to move this effort
through a distance. Looking back at our equation for work we could
rewrite this as:

* W=Fs
* Work input = effort x distance moved by effort.

The machine then provides a work output; this may be used to
move a force (referred to as a load) through a distance). In equation
terms:

W=Fs

* Work output = load x distance moved by load.

Grade 9

Figure 5.1 Two very different
machines!

KEY WORDS

effort the force applied to a
machine

machines devices designed
to make it easier to do
mechanical work

mechanical work the amount
of energy transferred when

an object is moved through a
distance by a force

Work input

Machine

Distance moved by effort

Figure 5.2 Work input to a
machine
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Figure 5.3 A schematic of a
machine

Think about this...

There are energy losses in
every machine. This is usually
due to friction between the
moving parts of the machine.
This transforms some of the
work input into heat energy.
As a result, the work input is
always greater than the work
output (more on this later).

simple machine a device
which requires a single effort
to do work against a single
force

118

Work input Work output

Machine

Distance moved by effort Distance moved by load

If there were no energy losses inside our machine then:
* Work input = work output

* Effort x distance moved by effort = load x distance moved by
load

So, if the machine has been designed so the distance moved by the
load is less than distance moved by the effort then the load can be
greater than the effort. This means a small effort can be used to
move a large load.

For example, imagine a machine that when an effort of 100 N is
moved through 2 m it moves a load through a distance of 0.5 m. We
can determine the maximum value of the load.

* Effort x distance moved by effort = load x distance moved by
load

* 100N x2m=load x 0.5m
* 2007 /0.5 m =load
* Joad =400 N

The same logic could be used to show it is possible to move a
smaller load a bigger distance than the distance moved by the effort.

The term, simple machine, refers to a machine that is, well, simple!
This has lots of interpretations including:

* adevice that only requires a single force to work
* adevice for doing work that has only one part

¢ adevice that uses a single effort to do work against a single
load force.

Simple machines are often described as the elementary building
blocks from which all other machines are made.

Different types of simple machine

There are six different types of simple machine; we will look at each
of them in turn later.

* Inclined plane * Lever
* Wedge * Wheel and axle
* Screw * Pulley
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| | /‘
A
Lever Inclined plane

2 Wheel

Axle
Screw Wedge

Figure 5.4 The six different types of simple machines

Simple machines can be split into two groups. Wedges and screws
can be thought of as special kinds of inclined planes. Pulleys-and
wheels and axles can be considered to be special kinds of levers. We
will look at each group in turn in Sections 5.2 and 5.3.

No matter which type of simple machine we deal with they will fit
into one or more of the following categories.

DID YOU KNOW?

o The famous ancient Greek
Force multipliers philosopher Archimedes
first came up with the

These are machines designed so that the load is greater than the : . _
idea of a simple machine

effort. This is only possible if the load moves through a smaller

distance than the effort. around 250 BC. He listed
three types of simple
Work input Work output machine: lever, pulley and

screw. It was not until the
_ Renaissance when Galileo
Machine Lok completed the list of all

six. He was also the first to
) realise that simple machines

Distance moved by effort do not create energy.

Distance moved by effort

Figure 5.5 A schematic of a force multiplier. Notice the load is greater
than the effort but the distance moved is smaller.
Speed multipliers

These are machines designed so that the distance moved by the load
is greater than the distance moved by the effort in the same time. This
is only possible if the load is a smaller force than the effort.
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Work input

Machine

Distance moved by effort

Figure 5.6 A schematic of a speed multiplier. Notice
the load is smaller than the effort but the distance

moved is greater.

KEY WORDS

direction changers machines
that move the load in a
different direction to the
effort

mechanical advantage the
ratio between the load and
the effort

ratio the size of quantities
relative to each other
velocity ratio the ratio
between the distance moved

by the effort and the distance
moved by the load
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Work input

Machine

Work output

Distance moved by load

Load

= = = = = -

Distance moved by load Work output

Figure 5.7 A schematic of a'direction
changer. Notice the load is moved in a
different direction to the effort.

Direction changers

These are machines designed so that the load is moved in a different
direction to the effort.

Depending on how they are designed some machines can act as
both force or speed multipliers and direction changers. However, a
machine cannot multiply both the force and the speed at the same
time; this would mean the work output would be greater than the
work input.

Mechanical advantage (MA) and velocity ratio (VR)

Some machines are more effective than others. One type of force
multiplier might be able to move a 100 N load when 20 N of effort
is applied. Another might be able to move a 500 N with the same
effort.

It is not just a simple case of the greater the load that can be
moved the better the machine, there are a number of other factors.
However, there are two terms that are often used to compare
different machines. These are mechanical advantage (MA) and
velocity ratio (VR).

Mechanical advantage (AMA and IMA)

The term mechanical advantage refers to the ratio between the load
and the effort. For example, if a machine moves a 400 N load when
an effort of 100 N is applied the mechanical advantage is four. In
other words you get 4x the force out of the machine. Mechanical
advantage can be calculated using the following equation:

* Mechanical advantage = load / effort
* MA =load/ effort

MA has no units since it is a ratio. If the MA is 1 this means that the
effort equals the load. If the MA is two the load is twice the effort
and if the MA is 0.5 the load is half the size of the effort.
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Mechanical advantage is most frequently used to compare force
multipliers. If the MA is greater than one the machine can be
considered a force multiplier (as the load is greater than the effort).

There are actually two kinds of mechanical advantage; we have
really been talking about actual mechanical advantage (AMA).
This compares the force you get out (load) compared with what you
put in (effort).

All machines also have an ideal mechanical advantage (IMA). This
is the mechanical advantage if there were no other energy losses
(e.g. no losses through friction, etc.). For most of our calculations
and examples we will assume that there are no energy losses. In this
case IMA = AMA and so there is no need to distinguish between
the two. However, in the real world IMA is always greater than
AMA.

Velocity ratio (VR)

The term velocity ratio refers to the ratio between the distance
moved by the effort and the distance moved by the load. For
example, if an effort has to move 30 m in order to move aload 3 m
then the velocity ratio is 3.

* Velocity ratio = distance moved by effort / distance moved by
load.

* VR = distance moved by effort / distance moved by load.

Just like MA, VR has no units since it is a ratio. If the VR is 1 this
means that the effort and the load both move the same distance. If
the VR is 2 then the effort has to move twice as far as the load and if
the VR is 0.5 then the load ends up moving twice as far as the effort.

Complete the following table:

Distance moved by effort | VR | Distance moved by
(m) load (m)
0.16 4
0.5 1.5
2 0.5
0.1 |1

If the VR is less than 1 the machine can be considered a speed
multiplier (as the distance moved by the load is greater than the
distance moved by the effort).

Efficiency of machines

As discussed earlier, no machine can increase both the magnitude
and the distance of a force at the same time. This would break
the law of conservation of energy. When a machine provides an
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Complete the following

table:
Effort | MA Load
(N) (N)
500 2
30 120
360 0.5
0.2 1000

KEY WORDS

actual mechanical
advantage the ratio between
the load and the effort taking
into account energy losses due
to friction etc

ideal mechanical advantage
the ratio between the load
and the effort, assuming no
other energy losses

Think about this...

You will need to think
carefully about what the VR
number represents. You might
think a VR of 3 means the
load moves 3x further than
the effort. This is not true! In
fact the load will move a third
of the distance (i.e. 1/3).
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Worked example Think about this...

A simple machine provides

a work output of 120 J for

every 480 J of work input.

Its efficiency would be given

by:

1 = work output / work input
State principle or equation
to be used (definition of
efficiency)

n =120 J / 480 J Substitute
in known values and
complete calculation

® 1 =0.25 (or 25%) Clearly
state the answer (either as a
decimal or as a percentage)

To find the work output if
2800 J of work goes into
the machine we need to
rearrange the equation:

n = work output / work input
State principle or equation
to be used (definition of
efficiency)

work output = n x work input
Rearrange equation to make
work output the subject

work output = 0.25 x 2800 J
Substitute in known values
and complete calculation

work output = 700 J Clearly
state the answer with unit

We could then use our
equations for work input
and output to determine
the effort and/or load if the
other variables are known.

If the efficiency is one then
this means the machine is
100% efficient; there are
no energy losses and so

the work output equals to
the work input. Remember,
no machine is ever 100%
efficient.

Figure 5.8 The efficiency of a
machine increases as the load
increases.
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Why can’t the efficiency be greater than 1? What would this
mean?

increase in force there must always be a decrease in the distance
the force is moved. The reverse is also true; if a machine provides
an increase in the distance the force moves then there will be

a decrease in force (another way to think about this is that no
machine can produce more work than the amount of work that is
put into the machine).

The term efficiency (given the symboln) is the ratio between the
work output and the work input. It is often then multiplied by 100
to give a percentage. The equation is as follows:

* Efficiency = work output / work input
* 1 = work output / work input
Just like MA and VR, efficiency has no units since it is a ratio.

If the efficiency of a machine is 0.8 (or 80 %) this means that you
would get 80 ] of work out for every 100 ] you put in. If you put in
500 J you would get 400 J of work out.

We can also express efficiency in terms of MA and VR by expanding
our equations for work output and work input:

* Efficiency = work output / work input

¢ Efficiency = (load x distance moved by load) / (effort x
distance moved by effort)

* load/ effort = AMA

* distance moved by load / distance moved by effort =1/ VR
So

* efficiency=AMA/VR

* n=AMA/VR

So a machine with an MA of 6 and a VR of 8 has an efficiency of:

n=AMA/VR =6/8 Substitute in known values and complete
calculation

n'=0.75 (or 75%) Clearly state the answer (either as a decimal or as a

percentage)
If AMA = VR then the machine would be 100 % efficient.
A
efficiency
(%)
04—
50 -
0 >

load (N)
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) 0 ) )
If the machine was 100% efficient then: Worked example

* n=AMA/VR=1

The following information

* AMA=VR was collected from a simple
In this case as there are no energy losses then the AMA would be machine.
equal to the IMA and so to calculate IMA we could use: Effort = 300 N, load = 1200
* AMA =IMA = VR N, distance moved by effort
* IMA = distance moved by effort / distance moved by load TO;(? :n;, Cdn:stance moved by
The VR is also equal to the maximum theoretical MA (IMA). n = AMA/VR State principle
or equation to be used
) ) terms of AMA and VR)
In this section you have learnt that: AMA = load / effort = 1200 N
® A machine is a device that makes it easier to do mechanical / 300 N = 4 Substitute in
work. known values and complete
* There are six different types of simple machine: inclined calculation
plane, wedge, screw, lever, wheel and axle, and pulley. AMA = 4 Clearly state the
answer

® Machines can be classed as force multipliers/speed

multipliers and/or direction changers. VR = distance moved by

effort / distance moved

e The force put into a machine is called the effort; this may be by load = 0.15 m /
used to move a load. 0.03 m = 5 Substitute in

® The work output from a machine is equal to the load x the known values and complete
distance moved by the load. calculation

¢ The work input to a machine is equal to effort x distance VR'=5 Clearly state the

moved by the effort. answer
o AMA = load /effort. n= AMA/VR State principle
or equation to be used
® VR = distance moved by effort / distance moved by load. (definition of efficiency in

® 1 =MA/VR can be derived from efficiency = work output / terms of AMA and VR)
work input and the equations for MA and VR above. N = 4 /5 Substitute in known

e If the machine is 100% efficient then VR = AMA = IMA. A aﬁd G
calculation

n = 0.8 (or 80%) Clearly
state the answer (either as a

Review questions decimal or as a percentage)

1. List the six kinds of simple machine. The efficiency of a particular
machine depends on a

number of different factors.
However, it is always true

2. Define the terms: effort, load, work input, work output, AMA,
VR, efficiency and IMA.

3. A simple machine is able to move a 400 N load a distance of that as the load increases
20 cm when a force of 20 N is moved through a distance of the efficiency of the machine
5.0 m. Calculate: will also increase.

a) the work input

b) the work output

c) the actual mechanical advantage efficiency the ratio between the
work output and the work input
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Length of slope (1)

Figure 5.9 A simple inclined
plane

Figure 5.10 Force required to
move an object up a.ramp vs.
lifting it vertically
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d) the velocity ratio
e) the efficiency of the machine
f) the ideal mechanical advantage.

4. A simple machine has an efficiency of 0.75 and a VR of 12.
Determine the MA and the load that can be moved if an effort
of 100 N is applied.

5.2 Inclined plane, wedge and screw

By the end of this section you should be able to:

¢ Derive an expression for MA of an inclined plane with or
without friction.

e (alculate MA, VR and efficiency of an inclined plane.

¢ (alculate MA, VR and efficiency of a wedge.

The inclined plane

neaniotsope AL inclined plane is just another name for a ramp. The object is

lifted to a height (/) by sliding it up the length of the slope (I).

You probably know from experience that it is easier push a heavy
object up-a ramp than it is to lift it to the same height. This is
because inclined planes reduce the force necessary to move a load.
In other words, the effort required is less. However, the amount of
work done must stay the same so the distance involved increases.

The actual mechanical advantage can be found using the standard
equation:

* AMA =load/ effort

In the case of the inclined plane the load would be the weight of the
object and the effort would be to force required to push it up the
slope.

Assuming there is no friction the force required to push the object
up the ramp is equal to mgsin 0. As the angle of the slope increases
sin O gets bigger; at 90° it equals one and so then the force required
equals mg. In other words, the shallower the slope the lower the
force required; however, you would have to push the object a much
greater distance to raise it to the same height.

We can derive an expression for mechanical advantage using the
dimensions of the inclined plane:

* Work output = Fs=1oad x h

* Work input = F s = effort x

If there are no energy losses (i.e. there is no friction), then work
output = work input, so:
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* load x h = effort x I
* load/effort=1/h

* load /effort = MA

* MA=I/h

This is really the IMA as we have had to assume that there are no
energy losses due to friction. Remember, the IMA is also equal to
the VR so the VR for an inclined plane:

* VR=IMA=1/h

The gentler the slope, the greater the ratio of the length of its slope
to its height. Therefore, the greater the IMA.

The inclined plane can be thought of as a force multiplier and
direction changer.

Activity 5.3: Inclined planes

Calculate the VR (and so the IMA) for the following:

1. A slope of length 20 m that rises to a height of
5m.

2. A slope of length 100 m that rises to the same height.

3. A slope that is at an angle of 30° to the horizontal and
rises to a height of 50 m.

In reality, when you push an object up a slopé yé;u need to apply an
effort greater than mgsin 0 as you also need to overcome the force
due to friction. The force required would equal mgsin 8 + force due

to friction. Therefore the actual mechanical advantage may be found

using the following equation:
* AMA =load/ effort av7,
« effort = mgsin 0 + frictional fotce

* load = mg ol T

* AMA =mg/ (mgsin__é + frictional force)

The efficiency of an inclined plane can be determined using the
standard efficiency equation just applied to inclined planes:

* 1 =work output /'work input = load x h / effort x |
Or, in terms of AMA and VR:

* n=AMA/VR

* AMA = mg/ (mgsin 0'+ frictional force) and VR =1/ h
* n=mgh/ (mgsin.e + frictional force)!

A wedge is our second type of simple machine. Wedges are used
to separate two objects or split objects apart. Examples of wedges
include knives, forks, nails, spears, axes and arrows heads.

Grade 9

Figure 5.11 The ancient
Egyptians used inclines to help
in the construction of the great
pyramids. ./

Think about this...

mgh is the useful work
output, whereas (mgsin 6

+ frictional force)( is the
work input. Think about this
as work done in lifting the
object + work done against
friction.

Activity 5.4: Including
friction

A slope of length 50 m rises
to a height of 10 m above
the ground. An effort of
100 N is needed to push a
250 N object up the ramp.
Calculate:

1. AMA

2. VR
3. efficiency

wedge a piece of material,
such as metal or wood, thick
at one edge and tapered to a
thin edge at the other
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effort

load

Figure 5.12 A simple wedge

Penetration length (L) Wed
edge

thickness (t)

Figure 5.13 Characteristics
of a wedge

Single Wedge

Double Wedge

Figure 5.14 A single or double
wedge

DID YOU KNOW?

The origin of the wedge is
unknown, probably because
it has been in use for over
9000 years. In ancient
Egyptian quarries, bronze
wedges were used to break
away blocks of stone used in
construction.
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A wedge can either be composed of one or two inclined planes.
A double wedge can be thought of as two inclined planes joined
together with their sloping surfaces outward.

There are two major differences between inclined planes and
wedges. Firstly, when in use an inclined plane remains stationary;,
whereas the wedge moves. Secondly, the effort is applied parallel
to the slope of an inclined plane. When using a wedge the effort is
applied to the top of the wedge.

The actual mechanical advantage can be found using the standard
equation:
* AMA =load/ effort

In this case the load would be the force exerted on the object being
split and the effort would be the force applied to the top of the
wedge. '

Just like we did with inclined planes we can derive an expression for
mechanical advantage using the dimensions of the wedge:

* Work output = Fs =load x ¢

* Work input = F s = effort x L

If there are no energy losses (i.e. there is no friction), then work
output = work input, so:

* load x t = effort x L

* load /effort =L /t

¢ load /effort = MA

* MA=L/t

This is really the IMA as we have had to assume that there are no
energy losses due to friction. Remember, the IMA is also equal to
the VR'so'the VR for awedge =L/ t.

* VR=IMA=L/t

The more narrow the wedge, the greater the ratio of the length of its
slope to its width. Therefore, the greater the IMA.

Like inclined planes, wedges can be thought of as force multipliers
and direction changers.

Inclined plane

‘ -
Wedge

Figure 5.15 Differences between Figure 5.16 Three different wedges:
a wedge and an inclined plane ~ which offers the greatest IMA?
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The efficiency of a wedge can be determined using the standard
efficiency equation just applied to wedges:

screw

* 1 = work output / work input = load x ¢/ effort x L

thread

The screw

The term screw really refers to any cylinder with a helical thread
around it. This means it includes nuts and bolts as well as more
traditional screws. The screw is a very useful machine; it can be
used to hold objects together, to dig into the ground and to bore
through rocks.

You can think of a screw as like an inclined plane wrapped around
a cylinder. In one turn of the screw it digs in and moves into the
material a distance equal to the separation between the threads.
This is referred to as the pitch (P) of the screw and it is analogous to
the height of an inclined plane. If you could unravel a screw thread
for each rotation you could see it moves up a distance equal to P.
The length of the slope would be the same as the circumference of
the screw shatft.

The movement of the screw tip into the material provides the load,
whereas the force used to turn the screw is the effort.

The maximum theoretical mechanical advantage (IMA) for a screw
can be calculated using the following equation:

* IMA=nd/P

d = the mean diameter of the screw shaft in m (nid is the
circumference of the screw shaft).

P = the pitch of the screw in m.

There is always a great deal of friction when using screws and
the actual mechanical advantage is much less than the value
calculated using the equation above. However, it is also worth
noting mechanical advantage of a screw system is increased as the Figure 5.18 Screw characteristics
screwdriver (or other method for turning the screw) produces its

own mechanical advantage.

In this section you have learnt that:

e For an inclined plane the AMA = load /effort, where the load
= the weight of the object and the effort = the force required
to push the object up the slope (mgsin 6 + frictional forces).

e If we assume there is no friction on an inclined plane then Figure 5.19 Screw threads

VR = IMA = length of the slope ({) / height of the slope (h).

® For a wedge the AMA = load /effort, where the load = the
force applied to the object being split apart and the effort =
the force applied to top surface of the wedge.

e If we assume there is no friction on the wedge then VR = screw a cylinder of material
IMA = penetration length (L) / wedge thickness (t). with a helical thread around it
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Think about this...

The equation for the screw
shows how similar a screw
and an inclined plane are.
nd is equivalent to [ and P is
equivalent to h. MA for the
inclined plane = [/ h and for
the screw = nid / P.

DID YOU KNOW?

Some say there are only five
different types of simple
machine. They argue that
the wedge is a just a moving
inclined plane. Others

say that the screw is just a
helical inclined plane; this
reduces the list to four!

fulcrum the pivot of a lever

lever a bar which is free to
turn around a fixed point
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Review questions

1.
2.

For an inclined plane derive n =1/ h.

A block of weight 5000 N is pushed up a slope by a force of
250 N. Assume there is no friction. Calculate:

a) the actual mechanical advantage
b) the velocity ratio
c) the length of the slope if the height of the slope is 10 m.

An inclined plane is 100 m long and at-an angle of 20° to the
horizontal. The AMA of the slope is two. Calculate:

a) the effort required to push a 7200 N block up the slope
b) the ideal mechanical advantage
c) the efficiency of the slope.

Describe the differences between a wedge and an inclined
plane. :

5.3 Levers

By the end of this section you should be able to:

Determine the MA, VR and efficiency of a lever.
Identify the orders of a lever and give examples.

Describe the use of a wheel and axle and determine MA, VR
and efficiency of a wheel and axle.

Describe the use of gears.

Describe different pulley systems and calculate MA, VR and
efficiency of a pulley system.

Describe the use of a jackscrew.

Using levers

A'simple lever is just a bar that is free to turn around a fixed point.
This fixed point is called the fulcrum (sometimes the pivot).

fulcrum (or pivot)

/

load
effort

Figure 5.20 Key features of a simple lever

Unlike our earlier simple machines levers involve twisting and
turning forces.
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effort
fulcrum (or pivot)

load / load
effort \

f \#

fulcrum (or pivot) o)
Figure 5.21 Two different ways to use a lever to lift a load DID YOU KNOW:

The term lever originates in

MA, VR and efficiency of levers France; ‘levier’ means to “to
raise.

When dealing with levers the forces are twisting rather than moving
in a straight line. As a result we need to think carefully about MA
and VR. Let’s take a simple example of a balanced see-saw.

In order to balance the turning forces (moments) from both the
objects must be equal. The forces might be different but their product the result of

turning effects must be the same (more on this in Grade 10). In multiplying two values
order for an object to balance:

* anticlockwise turning force = clockwise turning force
So in the example below:

* F xd =F xd,

fulcrum

|

Fy Fo

Y
l dy d>

Figure 5.22 A simple balanced lever

If F, is twice as large as F, then F, will need to be twice as far away
from the fulcrum in order for the see-saw to balance. The product
of the force and distance for both the left hand side and the right
hand side must be equal.

For example, you can balance a 10 N rock with a 0.01 N feather. The
feather would need to be 1000 times further from the fulcrum than
the rock.

This principle can be applied in terms of load and effort. Imagine
the feather was the effort'and the rock was the load. The lever has
acted like a force multiplier with a 0.01 N input force and 10 N
output force. Remember, in order for this to be true the effort needs
to be applied 1000 times further away from the fulcrum than the
load. This leads to the following equation:

* load xd, = effort x d,
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Think about this...

The distances to the fulcrum
must always be perpendicular
to the forces.

DID YOU KNOW?

Archimedes did not invent
the lever; instead he wrote
the first known explanation
of the principles involved.
According to Pappus of
Alexandria and referring to
the MA offered by levers,
Archimedes once said:
“Give me a place to stand
on, and I will move the
Earth”
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fulcrum (or pivot)

Figure 5.23 The key factors affecting the MA and VR of a lever

It is important to notice that the distances used are always
perpendicular to the forces. The greater the ratio of d, to d, the
greater the mechanical advantage (the greater the load you can
lift for the same effort). Longer levers make it much easier to lift
heavier loads. If you had a really long lever you could lift almost
anything (see Did you know?).

fulcrum (or pivot)

l dL dE

Figure 5.24 Distances perpendicular to forces

effort

The actual mechanical advantage of the lever is given by the
standard equation for MA:

* AMA =load/ effort

However, the equation for VR for levers is a little different. As
the system is rotating we do not use the distance moved by the
force. Instead we use the distances from the fulcrum. The VR can
be found as the ratio between the distance from the effort to the
fulcrum and the distance from the load from the fulcrum.

* . VR = distance from the effort to the fulcrum / distance from the
load from the fulcrum.

* VR=d,/d,

If there are no energy losses then IMA = VR and so:
* IMA=d, /d,

The efficiency of a given lever maybe found via:

* efficiency =n =load x d, / effort x d,

(In terms of MA and VR, = AMA/VR).

Depending on the relative distances levers can be force multipliers/
speed multipliers and/or direction changers.
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Different classes of lever

There are three different classes of levers depending on the relative
positions of the load, fulcrum and effort.

Table 5.1 Different classes of levers

Class | Diagram Description Examples
1st load Fulcrum is between ® See-saw
| T the load and effort

Pliers (double lever)

e Crowbar
* A 1 effort

e Scissors (double lever)

2 The load is between e Wheelbarrow
T effort |o|ad erum the effort and the e A rowing oar
- fulcrum
{ A e Nutcracker (double lever)
3rd oad The effort is between | ® Catapult
OIa effort worum | the load and fulerum | o spade
Y A ¢ Tongs (double lever)

lever balance "fad
hammer removes nail

crowbar T~ fulerum

fulcrum I(iad
fulcrum

load —

effort

opening a tin

load

oar in water

wheelbarrow paper cutter

fulerum
effort load fulerum

load

fulcrum effort

Figure 5.26 Second-class levers: load between effort and fulcrum
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icet fulerum effort effort
lcetongs oo tweezers l fulcrum  Charcoaltongs |

l <—— fulcrum

load T T
load
load effort T effort

fishing rod

fulcrum

spade

fulecrum —

Figure 5.27 Third-class levers: Levers in the body

effort between load and fulcrum
Examples of the three classes of lever occur in the body:

Table 5.2 Levers in the body

Fulcrum Load | Muscle providing effort

e Use a metre rule, a known Head Joint between Head | Muscle at back of neck
weight as the load, Eeagband
ackbone

and a spring balance as
the effort in order to Foot Toes Body | Calf muscle (back of leg)
demonstrate the three

Arm Elbow Arm Biceps muscle (upper arm)
classes of lever.
® Use cardboard to make The wheel and axle
a simple label for the
fulcru?n. The wheel and axle is another type of simple machine; it is
comprised of a large wheel secured to a smaller wheel, which is
* Make arrows to label the called an axle. Wheels and axles do not just include the obvious;
load and effort. they also include gears, door-knobs, steering wheels and even

screwdrivers)

There are two main ways to use a wheel and axle. The first way can
be seen in Figure 5.28. You can wrap a rope around a supported
wheel and apply an effort to the end of the rope. This causes the
wheel and-attached axle to rotate. If a load is attached to the axle
as'it turns it lifts the load. The effort has to move a long way to
complete one single revolution (as the diameter of the wheel is
large). The load moves a much smaller distance as the axle has a
much smaller diameter. This means the load can be much greater
than the effort and so there is a mechanical advantage.

The second way to use a wheel and axle is to have two wheels at
the end of an axle. The wheel and axle then behaves like a type of
rotating lever. In this case the fulcrum would be the centre point
of the axle. As the wheels turn they can then be used to provide
movement.

load ffort The mechanical advantage of a wheel and axle may be calculated
using the standard equation for AMA:

* AMA =load /effort

The VR of the wheel and axle is the ratio of the radius of the wheel
to the radius of the axle. This is because as the wheel turns once it

Figure 5.28 A wheel and axle
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covers a distance equal to 27nR; in the same time the axle travels 2mr.
So the VR is given by:

* VR = distance moved by effort / distance moved by load

* VR=2nR/2nr

* VR=R/r

If the machine was 100% efficient then VR = MA = IMA so:

* IMA=VR

* IMA=R/r

If the radius of the wheel is ten times greater than the radius of
the axle, every time you turn the wheel once, the force will be i &1 B
multiplied by ten but it will also travel ten times the distance. Figure 5.29 An example of a

SR

Depending on the relative radii wheels and axles can be thought of wheel and axle
as force multipliers/speed multipliers and/or direction changers.

DID YOU KNOW?
The effect of gears
It is probably fair to say

Gears are often used in conjunction with a Wheel and axle. They can B i} ¢ the wheel is the most
be configured to offer an increase in mechanical advantage or an

) 4 . ) : important invention of all
increase in the distance travelled, depending on the requirements of

time. The oldest wheel was

the system. found in Mesopotamia
As one gear turns its teeth lock into another gear and force it (modern Iraq/Syria). It is
to rotate. The gear made to turn is called the driving gear or believed to be over 5000

occasionally the pinion (the one where the effort is applied). As the years old.
driving gear then rotates it turns the driven gear.

The VR of a pair of gears is given by the ratio of the number of their
teeth.

* VR = number of teeth on driven wheel / number of teeth on
driving wheel

* VR=N

driven driving
This is also called the gear ratio. If the gear ratio was 0.5 then the
driven gear would rotate once for every two rotations of the driving
gear.

Figure 5.30 The radii of the wheel
Looking at Figure 5.31, if the left hand wheel was the driving wheel  and axle are the two factors that
then there would be a VR of less than one. In other words the determine the VR.

distance would increase but the effort would have to be greater than
the load.

If the driving wheel was the one on the right then the opposite
would be true. The load would be greater than the effort but it
would not travel as far.

If the machine was 100% efficient then VR = MA = IMA so:

* IMA=VR
* IMA= Ndriven Ndriving

Two or more gears together are called a transmission. Depending ~ Figure 5.31 A simple example of a
on the gear ratio, transmissions can produce a change the speed, pair of gear wheels
magnitude and direction of a force.
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Figure 5.32 A rack and pinion

tension

load

effort

Figure 5.33 Using a pulley to lift
a load

Figure 5.34 A fixed pulley offers
no MA but does change the
direction of the force.
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DID YOU KNOW?

The most common application of gears involves one gear
causing another to rotate. However, in a rack and pinion a gear
causes a linear toothed track (called a rack) to move. This leads
to a movement in a straight line rather than a rotation.

Pulley systems

There are several different kinds of pulley. The most simple
comprises a fixed axle with a rope looped over the top (called a class
1 or fixed pulley). Even if there was no friction, a fixed pulley will
not provide more than a mechanical advantage of 1. This means
there is no multiplication of force; instead the pulley just changes
the direction of the force.

The second type of pulley is often called a movable pulley. Here the
axle is free to move up and down.

If one end of the rope is fixed then applying an effort to the other
end of the rope (after it has been looped around the pulley) will
effectively provide about two times the force. However, it is worth
noting that you have to provide additional effort to lift the movable
pulley as well as the load.

A movable pulley has a VR of 2 as you would have to pull 2 m

of rope through the pulley in order for it to lift the load 1 m. If
there are no energy losses'in the pulley then the VR = MA = IMA.
Therefore the IMA for a movable pulley is also 2.

For both a fixed and a movable pulley there will be energy losses
due to friction. As a result the MA will always be less than the VR.

A compound pulley is a combination of a fixed and a movable
pulley. This is sometimes called a block and tackle. The movable
pulley provides the MA whereas the fixed pulley changes the
direction of the force. This makes it easy to lift the load when
standing on the floor!

50 N1

50N

‘ 100N

Figure 5.35 A movable pulley Figure 5.36 A compound pulley
does provide an MA. is a combination of a fixed and
movable pulley.
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To increase the VR of any block and tackle, a pulley block with
more than one pulley in each block can be used. A long length of
rope is tied to the top block then passes around each of the pulleys
in turn.

The pulleys might be side by side (as in Figure 5.37) or above each
other, as shown in the diagram in Figure 5.38.

The VR of these systems is given by the number (N) of sections of i
rope used to lift the load. If there is only one section then VR = 1, if Fzgure 5.37A pulley block with

there are two sections then the VR = 2, etc. three pulleys
* VR = number of sections of rope that lift the load
« VR=N e
These systems are never 100% efficient since there is friction on the ( ~—— fixed pulley
pulley and some of the effort is used to lift the lower block instead
of the load. If the machine was 100% efficient then VR = MA = IMA C)
SO q
« IMA=VR effort
e« IMA=N i X
( A
|/
©
|/
3 load here

Figure 5.38 Two pulley blocks
with three pulleys in each

F>=33%N
F»=100 N
s=10cm _ s=300f
N=1 ]
F1=100 Nl
h=10cm

N=1 N=2

Figure 5.39 The VR of a pulley system depends on the number of
sections of rope that lift the load.
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Think about this...

What advantages and
disadvantages are there to
changing the diameter of
the pulleys wheels, as shown
in Figure 5.38? Hint: think
about the IMA offered by a
wheel and axle.

KEY WORDS

fixed pulley a grooved wheel
on a fixed axle with a rope
looped over it

movable pulley a grooved
wheel on a movable axle with
a rope looped round it

pulley a simple machine
comprising a wheel with a
grooved rim over which a rope
or chain is passed

transmission a set of two or
more gears

complex machine a device
where two or more simple
machines are combined to
make a single mechanism

differential pulley a pulley
combined with a wheel and

¢ Arrange the pulley blocks as shown in Figure 5.40. Attach
a forcemeter to measure the effort. Place a known weight
on the lower block. Pull the forcemeter downwards so that
the load rises slowly at a uniform speed. Note the steady
reading. Repeat and take the average reading. Table 5.3
shows how to record your results.

~— fixed pulley

effort effort

load here load here

Figure 5.40 Using (a) two, and (b) four pulleys to raise a load

e Return the load to its low original position. Note the
position on the rule of the load and the hook of the
forcemeter (the effort). Raise the load a known distance.
Measure how far the effort moves. Repeat and take the
average reading.

¢ (alculate MA, VR and the efficiency.
® Repeat, using different weights as the load.

Table 5.3 Investigating a system of four pulleys.

axle Load |Effort |MA |Distance |Distance VR |Efficiency
jackscrew a screw combined moved by | moved by
with a lever load effort
3N [1.5N [2.0 |10 cm 40 cm 4 150%
5N |2.0N |2.5 |12 cm 48 cm 4 162.5%
etc.

The table shows results for a system of four pulleys. The
mechanical advantage is less than four and the velocity ratio
is exactly four (it is equal to the number of strings holding the
load).

More complex machines

A complex machine is one where two or more simple machines
are combined to function as a single mechanism. Examples
include scissors, wheelbarrows, bicycles, the differential pulley and
the jackscrew. We will look at two examples in more detail, the
differential pulley and the jackscrew.
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The differential pulley

A differential pulley is a pulley in combination with a wheel and
axle. It is sometimes called a “chain hoist” and it can be used to lift
extremely large masses over a short distance. F

It is composed of two fixed pulleys at the top. These are attached to
each other and both rotate together. However, they have different

radii (R and r). One long loop of rope (or more commonly a chain)
passes around the pulleys. The excess hangs off the pulley in a loop.
To lift a load you pull on the loop, causing the pulleys to rotate and W
slowly lift the load. The mechanical advantage is calculated using Figure 5.41 The key features of a
the standard equation:

* AMA =load /effort

In this case the load = W and the effort = F so:
* AMA=W/F

The VR (and so the IMA) is given by:

« VR=IMA=2R/(R-r)

differential pulley

As R - r approaches zero the IMA increases. If R is about the same
as r it almost gets to the stage where the weight looks like it is no
longer lifting as you end up pulling long lengths of chain or rope
downward for a very small vertical movement. However, you are
able to lift very heavy loads.

The jackscrew Figure 5.42 A simple jackscrew

A jackscrew is a screw in combination with a lever. The MA from used as a car jack
the lever allows large weights to be lifted by the screw.

The mechanical advantage is calculated using the standard equation:
* AMA =load /effort

In this case the load = W and the effort = F (the force applied at the
end of the lever) so:

* AMA=W/F
The VR (and so the IMA) is given by:

* IMA=VR=2nR/P

The longer the handle (R) and the smaller the pitch (P) the greater
the IMA, but it would take even more turns in order to lift the car!

jackscrew

In this section you have learnt that:

® For a lever the AMA = load / effort and the VR (and so IMA)
= distance of the effort to the fulcrum (d,) / distance of the
load from the fulcrum (d).

e There are three orders of levers, depending on the relative
positions of the load, fulcrum and effort.
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For a wheel and axle the AMA = load / effort and the VR
(and so IMA) = radius of wheel (R) / radius of axle (r).

There are three different types of pulley systems: fixed,
movable and compound.

For a pulley the AMA = load / effort and the VR (and so IMA)
= the number (N) of sections of rope used to lift the load.

A complex machine is a combination of two or more simple
machines (for example, a jackscrew is a combination of
screw and lever - this can be used to lift very heavy loads).

Review questions

1.
2.

4.

Explain how a lever canact as a force'multiplier.

For the following simple see-saw calculate:’
a) theload that could be lifted

b) the mechanical advantage (assume the lever is 100%
efficient). \

load

80N

|
I
|
: 4cm 30cm !

Figure 5.44 A simple see-saw

A simple wheel and axle is used to lift a bucket of water out

: of a well. The radii of the wheel and axle are 20 cm and 4 cm,

respectively. Determine:

a) the velocity ratio (and so the IMA)

b) the theoretical effort required to lift aload of 30 N

assuming no energy losses
c) the efficiency if the actual effort required is 10 N.
Describe the three different types of pulley.

End of unit questions

1.

Explain why for every simple machine the actual mechanical
advantage is less than the ideal mechanical advantage.

By giving an example of a simple machine (including its
dimensions) explain what is meant by force multiplier, speed
multiplier and direction changer.
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3. Aninclined plane rises to a height of 2 m over a distance of 6 m.
Calculate:

a) the angle of the slope
b) the VR (and so IMA) of the inclined plane

c) the theoretical force required to push an object with a mass
of 200 kg up the slope.

4. Give three examples of wedges.

5. A 10 cmlong, 2 cm wide wooden wedge is pushed into a soft
wood block. Calculate:

a) the velocity ratio of the wedge

b) theload on the soft wood if the effort applied is 30 N
(assuming the wedge is 100% efficient).

6. Explain how screws could be considered to be similar to
inclined planes.

7. Describe the three classes of lever and give a practical example
of each.

8. Explain how a jackscrew is used and how to calculate its'ideal
mechanical advantage.
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Fluid statics

Section Learning competencies
6.1 Air pressure e Define the term air pressure and use the definition to solve related
(page 141) problems.
® Describe atmospheric pressure and explain its variation with
altitude.

e Explain how to measure atmospheric pressure and show that
760 mmHg is equal to one atmosphere.

6.2 Fluid pressure e Define the term fluid and state the similarities and differences
(page 151) between liquids and gases.

e Define the term density and relative density and determine each
for a given body.
Explain how the pressure in a liquid at rest varies.
Apply the formula p = hpg and use it to solve problems (including
determining the pressure inside a fluid taking into account
atmospheric pressure).

e State Pascal’s principle, and apply it to solve problems and explain
applications (such as the hydraulic lift).

¢ Explain the use of a manometer.

® Demonstrate an understanding of, distinguish between and
calculate atmospheric, gauge and absolute pressure.
State Archimedes’s principle and the principle of flotation.
Distinguish between true weight and apparent weight of a body.

¢ (alculate the buoyant force acting on the body in a fluid and
explain why bodies float or sink.

¢ (alculate the density of a floating body or density of a fluid using
the flotation principle.

How does a massive ocean liner, made of steel, float on the water,
yet a tiny penny sinks? Why is it when you go swimming you can
feel the water pushing up on you, yet you can’t feel the massive
weight of the column of air on top of your head? This is all down
to fluid statics, the study of the density and pressure in stationary
liquids and gases.

From simply breathing in and out, to the blood pumping through
your veins, pressure in liquids and gases plays an important role in
our lives. Without atmospheric pressure our blood would simply
boil and life on Earth would not even be possible.

In this unit we will investigate atmospheric pressure, look into what
causes pressure in liquids and gases, explore the factors that affect
it and learn how to use a range of simple pieces of equipment to
measure pressure.
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6.1 Air pressure

By the end of this section you should be able to:

e Define the term air pressure and use the definition to solve
related problems.

e Describe atmospheric pressure and explain its variation with
altitude.

¢ Explain how to measure atmospheric pressure and show that
760 mmHg is equal to one atmosphere.

Under pressure

If you've ever had an injection you will have noticed how easy it is
for the doctor to push the needle through your skin. This is because
the needle has a very sharp point and so when the doctor exerts a
relatively small force the needle creates a great deal of pressure on
the skin.

Pressure is defined as the amount of force acting per unit area.
* Pressure is equal to force per unit area.

If a large force acts on a small area it creates a greater pressure.
For example, most animal predators have pointed teeth. When a
crocodile or shark bites into its prey, the pressure is very large and
so the teeth sink in!

The reverse is also true. A large vehicle like a tractor or truck may
have some very large tyres. These increase the area over which the
force is acting and so reduce the pressure. This means it is less likely
for the tractor to sink into the mud and get stuck.

The pressure exerted by a force may be calculated using the
equation below:

* pressure = force / area
* p=F/A

p = pressure in Pa.

F = force in N.

A =areainm?

Pressure is measured in pascals. One pascal is equal to a pressure of
1 N per square metre (1 N/m?). The pascal is the SI derived unit of
pressure (this includes all forms of pressure).

Worked example

A boy weighs 500 N and the soles of his feet have an area of
0.05 m2. Determine the pressure he exerts when he stands
a) on both feet and b) on one foot.

Grade 9

Figure 6.1 Injections don’t hurt
much because the needle exerts a
very high pressure on the skin.

.

Figure 6.2 The area over which
the force is acting affects the
pressure it exerts.

Figure 6.3 A large force pressing
on a small area creates greater
pressure than a smaller force on a
larger area.
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DID YOU KNOW?

The pascal is named after
Blaise Pascal. He was a
French physicist most noted
for his experiments with
barometers in the mid-17th
century (a barometer is

an instrument to measure
air pressure; more on this
later).

Complete the table below:

Force |Area Pressure
720 N [4.0 m?

0.02 m? {240 kPa
5.0N 1.0 Pa

Stand on a piece of squared
paper. Carefully draw around
your feet (or get a partner
to do this for you).

Figure 6.4 In order to
determine the pressure you
exert you need to measure the
area of your feet!

Use this to work out the
area of your feet (to do this
count the number of squares
and multiply by the area of
each square).

Measure your weight in N
(or your mass in kg and
multiply by 10 N/kg), then
use the equationp=F/ A
to determine your pressure.
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On both feet:

p = F / A State principle or equation to be used (definition of pressure)

p =500 N / 0.05 m? Substitute in known values and complete

calculation

p = 10 000 Pa or 10 kPa Clearly state the answer with unit

If he stands on one foot his weight will be the same but the

area will be halved to 0.025 m*:

p = F / A State principle or equation to be used (definition of

pressure)

p =500 N / 0.025 m? Substitute in known values and complete

calculation

p = 20 000 Pa or 20 kPa Clearly state the answer with unit

We didn't really need to.do that last calculation. We can see that
if the area halves and the force stays the same then the pressure
doubles (pressure is inversely proportional to area).

Worked example

A book rests on a desk. Its covers measures 20 cm by 25 cm. It
exerts a pressure of 100 Pa. Determine the mass of the book.

p =F/ A State principle or equation to be used (definition of
pressure)

F=p x A Rearrange equation to make F the subject

In order to find the mass we first need to find the weight of
the book. This is the force the book exerts on the desk. The
area of the book is 0.20 m x 0.25 m = 0.05 m?.
F =100 Pa x 0.05 m? Substitute in known values and complete
calculation
F=5N Clearly state the answer with unit
This is the weight of the book so to find its mass we use w =
mg.
w=mg so m=w/qg Stateequation and rearrange equation to
make m the subject and solve
m=5N /10 N/kg Substitute in known values and complete
calculation

m = 0.5 kg or 500 g Clearly state the answer with unit (ideally kg)

What causes air pressure?

Although we can't feel it in our day to day lives, air has mass. This
means it also has a weight. One cubic metre of air has a mass of
about 1 kg and so a weight of 10 N. The simplest way to think about
air pressure is to treat it as the pressure due to the weight of the air
above pushing down on a certain area. This may seem like a silly
idea but actually it is pretty close to the truth.
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particles. These are in constant motion, they are travelling in e
different directions and some travel faster than others. When the air
particles are near a surface some will bounce into it and so exert a

force on the surface. It is this force that gives rise to a pressure. \ N
(, @

Atmospheric pressure :
The atmosphere is the layer of air that surrounds the Earth. Above @
your head right now there is a column of air about 40 km tall. The

exact height is quite hard to determine due to the fact that as the
height above the ground increases the air gets thinner and thinner
until there is practically no air.

A more complete picture involves thinking about the actual air )
~ ™~
(¢]

Figure 6.5 Air particles crashing
into a surface apply a force to that

surface.
This column of air has a weight, which presses down on you and it
is this that gives rise to atmospheric pressure.

We don’t normally notice atmospheric pressure. If you move your

hands up and down you can't really feel it, but it is definitely there!

The reason we don't feel it is because not only does it push on you Amosghend praseule
equally from all directions (left, right, front and back) but our P T
bodies push back out.

Pressure inside the body

There is a kind of equilibrium between the pressure in our bodies
and the surrounding atmosphere. If you went somewhere where the
pressure was much greater than atmospheric pressure our bodies
would be crushed. For example, deep-sea submarines have to be
very strong to withstand the crushing effect caused by the pressure
of the water.

Figure 6.6 The pressure in our
bodies pushes back against
atmospheric pressure.

Figure 6.7 A deep-sea submarine has to withstand very high
pressures. :

The reverse is also true. If you went somewhere where the pressure
was very low (e.g. into space without a pressurised space suit) the
pressure inside our bodies would push outwards with some very
nasty effects!

How big is atmospheric pressure?

The weight of the column of air above 1 m?at ground level is around
101 000 N! This means atmospheric pressure at ground level is
around 101 kPa. This is often referred to as 1 atmosphere or 1 atm:

* 1latm=101kPa

Figure 6.8 Without a pressurised
space suit this astronaut would
experience severe difficulties.
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Think about this...

In fact the pressure inside
our bodies is generally a bit
higher than atmospheric
pressure. Think about how
you already know this and
why do you think this is
important?

DID YOU KNOW?

The planet Venus has a
much denser atmosphere
that we do on Earth. The

Figure 6.9 Venus has a much greater atmospheric pressure than the

) Earth.
pressure on the surface is
around 90 atm! That is 9 101 000 Pa is a very large pressure, but we rarely notice it in our day
MPa or 9 million N per to day lives. It is about the same as haying a medium-sized elephant
square metre. That is the balance on the top of your head!
same pressure you would In the mid-17th century a German named Otto Von Guericke (who
experience if diving to a was mayor of Magdeburg) invented a vacuum pump. This clever
depth of nearly 1 km under machine removed the air from inside a chamber and so the force
water. due to atmospheric pressure could really be seen.

Von Guericke used his pump to removed air from inside two brass
hemispheres touching each other. With the air removed the pressure
from the atmosphere squeezed the two hemispheres together. With
no counter pressure from the air inside, the hemispheres were
locked tightly together: In 1654, in front of Emperor Ferdinand III,
he demonstrated how tightly by using thirty horses in two teams of
15 to try to separate the hemispheres. They couldn’t do it!

ICONISMUS XT ¢

Figure 6.10 Magdeburg
hemispheres

KEY WORDS

atmosphere the layer of air
surrounding the Earth

vacuum pump a machine for
removing the air from inside a
chamber

Figure 6.11 Teams of horses could not pull the hemispheres apart.
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The atmospheric pressure pushing the two hemispheres together
was too strong. the hemispheres could not be separated. It was not
until air was allowed back inside the hemispheres that the difference
in pressure was small enough to allow them to be pulled apart.

What effect does altitude have on atmospheric pressure?

The actual atmospheric pressure in the room today might be a bit
higher or lower than 1 atm. The heating effect from the Sun causes
small changes in pressure due to the uneven heating of the Earth’s
surface. This leads to high or low pressure weather systems. You can
think of a high pressure system as meaning there is a slightly greater
mass of air above your head than on an average day.

Figure 6.12 Differences in atmospheric pressure can lead to powerful
storms.

The height above sea level, or altitude, also has a significant effect on
atmospheric pressure. Imagine climbing a tall mountain; the higher
you get, the smaller the column of air above you. This means there
is a smaller mass of air above you and so less weight pushing down.

As altitude increases the atmospheric pressure decreases.

Table 6.1 shows how the pressure varies with altitude. You can see
that it is not a simple relationship and it depends on temperature
changes and position on the Earth.

Table 6.1 Pressure at different altitudes

Altitude (m) | Approx. pressure (Pa)

0 101 000

1000 90 000

2000 79 000

5000 54 000

10 000 26 000

15 000 12 000

20 000 6000

25 000 1300 -

30 000 270 -

atmospheric pressure drops.

Grade 9

Fill a glass to the very top
and then place a card on
top of it. Make sure there is
no air trapped between the
glass the card.

While holding the card
carefully turn the glass over
and then let go of the card.

It should stay in place!
Atmospheric pressure is
pushing the card up and
preventing the water from
rushing out.

Plot a graph of altitude
against atmospheric pressure
using the information in
Table 6.1.

DID YOU KNOW?

At 1 atm, water boils at

100 °C. However, if the
atmospheric pressure drops
so does the boiling point. At
the top of tall mountains the
pressure is so low water will
boil at 75 °C! In the mid-
19th century explorers used
this fact to determine their

altitude.

Figure 6.13 As you climb a mountain the surrounding
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Figure 6.14 A barometer

=
o
-8
7
-6
|-5| «—— metre rule
-4
-3
-2

l | latmospheric pressure

.JL mercury in dish

Figure 6.15 A diagram of a
simple barometer

DID YOU KNOW?

The volume of an object is

affected by the temperature

and the surrounding
pressure. Chemical
reactions also depend on
pressure and temperature.
In order to ensure

experiments are conducted

under the same conditions
across the globe the

International Union of Pure

and Applied Chemistry
(TUPAC) define standard
temperature and pressure
as a temperature of 0 °C
and a pressure of 100 kPa.
However, several different
organisations use slightly
different values!
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Measuring atmospheric pressure

There are several instruments used to measure atmospheric
pressure. The most common is a barometer.

Think about the mercury in the dish. On the outside, air pressure
is pressing down on the mercury. On the inside, the column of
mercury in the tube is pressing down with an equal pressure. If
these pressures were not equal, the level of mercury in the tube
would alter until the pressures were balanced.

Until about 1650 the rise of liquid up a tube was explained by saying
that the vacuum ‘sucks up’ the liquid. This is not so - a vacuum
cannot suck, because there is nothing there to do the sucking! The
rise is due to air pressure on the surface of the liquid outside.

A mercury barometer is long and inconvenient, heavy, and contains
a liquid that is hazardous and easily spilt., Therefore, an aneroid
barometer is commonly used. (Aneroid means without liquid.) It
is compact and portable. A flat circular metal box, with only a little
air inside, is the important part (Figure 6.16). A spring prevents

its sides from being pushed in. The box is corrugated to make it
strong, so that it does.not collapse under air pressure. When the
pressure changes, the upper face of the box moves. The movement
is magnified several hundred times by a system of levers, which
move a pointer over a circular scale, graduated in centimetres. It

is graduated by comparing its readings with those of a mercury
barometer.

pointer
ir sori P
hair spring C =2 large movement
light chain
strong flat spring ,E \
l bent lever
+—very small movements
—>
corrugated metal box partial vacuum pivots

Figure 6.16 The construction of an aneroid barometer

Why 760 mmHg?

Pressure is often expressed in the units of mmHg. If the
atmospheric pressure is equal to 1 atm then the height of the
column of mercury in a barometer is 760 mm. We can prove this
mathematically.

The column of mercury will have a weight and the weight must
equal the force due to the atmospheric pressure pushing up on the
bottom of the column. Lets imagine a column of mercury 760 mm
tall with a radius of 5 mm. This exerts a force equal to its weight.
The weight is given by w = mg and we can determine the mass of
the column from its density and volume (p =m / Vand som = pV
and V = nr*h as this is the volume of a cylinder). So:

* V=nrh
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* V=n(0.005m)*>x (0.76) m
* V=597x10°m?

The density of mercury is 13 570 kg/m? so its mass is:

* m=pV

* m=13570 kg/m*x 5.97 x 10° m’

* m=0.81kg

Therefore the weight of the column can be found:
* w=mg

* w=0.81kgx9.81N/kg

* w=79N

This weight must equal the force due to the pressure on the bottom
of the column. So we can use the pressure equation to determine
the pressure required to support of column of this height.

* p=F/A

As it is a cylinder the area of the base of the column is given by A =
Tr* so:

e p=F/nr

* p=79N/mx(0.005m)

* p=101000 Paor 101 kPa

You can repeat the calculation above for columns with different
radii; the answers are always the same! You can‘combine all the
steps into one big equation:

* p=pnrhg/nr

The areas cancel, which shows that the area of the column does not
matter. Any column will reach the same height. This gives us:

* p =p hg(more on this equation later).

You might ask, why use mercury? Mercury is quite toxic and needs
to be handled very carefully; why not use water instead? This is
because water has a much lower density than mercury (around
1000 kg/m’ vs. 13:600 kg/m?). This means for that atmospheric
pressure can support a column of water around 10 m tall! This
would make our barometer far too large to be practical.

Some uses of air pressure

There are several uses for air pressure. Most rely on creating a
pressure difference by pumping air into or out of a chamber.
Pumping air into a'‘chamber creates a greater pressure and pumping
air out of a chamber creates a lower pressure.

If you create an area of lower pressure then the atmospheric
pressure is larger in relative terms. As a result air is pushed in due to
the greater force from the atmospheric pressure. Notice that there is
no such thing as sucking to pull air into a machine.
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Figure 6.17 The volume of a
cylinder

Think about this...

As atmospheric pressure can
support a column of water
10 m high this is also the
maximum height to which

a column of water can be
drawn up by a vacuum pump
(i.e. by creating a pressure
difference). For any higher,
water pumps must be used.

KEY WORDS

aneroid barometer a device
for measuring atmospheric
pressure that uses a
corrugated metal box rather
than liquid

barometer a device for
measuring atmospheric
pressure

pressure difference the
relative value of the pressure
of gas in different chambers
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<«—— air pushed into mouth

air pressure on liquid

Figure 6.18 Atmospheric pressure
pushes the drink up the straw

KEY WORDS

common pump a pump that
relies on atmospheric pressure
to move water

drinking straw a thin tube
used to suck liquids into the
mouth

force pump a pump that
relies on atmospheric pressure
and compressed air to move
water, often to a great height
Llift pump a pump that relies
on atmospheric pressure to
move water

suction pad a round rubber
pad that relies on atmospheric
pressure to stick to smooth
surfaces
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Uses of air pressure

A suction pad is a round rubber pad, perfectly flat on one side.

Wet this side and press the pad against a window or smooth

wall, pushing out all the air from under it. The pad sticks firmly.
Atmospheric pressure holds it in place. The pads are used to lift and
move large sheets of plate glass, metal and plastics, to put notices on
windows, and on many toys, e.g. arrows, that stick to walls.

If you drink through a drinking straw, you are making use

of atmospheric pressure. You suck on the air inside the straw:
Therefore the atmospheric pressure outside is greater than the
pressure inside, and liquid is pushed up (Figure 6:18).

A lift pump (common pump) is often used to raise water from wells.
A piston moves up and down a tube (Figure 6.19). There is a valve

in the piston and also one at the end of the tube. A valve is usually
made of leather, and has brass on it to make it heavy. The valves are
normally shut. They let water pass upwards but not downwards.

l down T up l down T up

/7 /7 /7 7

valve A —11'{'- min _{ﬁ i
foot valve B —Ta;r. -
‘ l l |7 l l ‘ ‘ l l |7water level
a b c d

Figure 6.19 'The four stages in the operation of a lift pump

* Downstroke: Foot valve B closes under its own weight. Valve A
opens and lets air pass through it into the space above the piston.

* Upstroke: Valve A closes under its own weight. The pressure
under the piston is less than atmospheric. Atmospheric pressure
forces water into the tube through B.

* Downstroke: Valve B closes and A opens. Water passes through A
into the space above the piston.

* Upstroke: Valve A closes and water is lifted up the tube and out of
the spout. More water passes through B to keep the pump filled.

Atmospheric pressure determines the height to which water can
be pumped. Even a perfect pump can raise water only 10.4 m. In
practice, because of leaks at the valves and piston and of dissolved
gases from the water, most pumps raise water about 7 m only.
Delivery of water is not continuous.

A force pump can pump water to a great height. Some, used by
firemen, can force water hundreds of metres high.
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There is a foot valve B (see Figure 6.20), as in the lift pump, but it
has a solid piston and a delivery tube at the bottom of the pump.
There is a valve A in the delivery tube where it joins a chamber.

* Upstroke: The pressure in the tube under the piston becomes less.
Valve A closes and foot valve B opens. Water is forced through B
into the tube by atmospheric pressure.

* Downstroke: B closes. Valve A opens; water is forced through it
and the delivery pipe into chamber C. The pressure on the piston
(and not atmospheric pressure) determines the height to which
the water is pumped.

The force pump itself delivers water only on the downstroke; the
flow of water stops on the upstroke. However, the air trapped in
chamber C is compressed during every downstroke. The pressure
of this air continues to force out water during the upstroke, and
therefore the pump delivers a steady stream of water.

Bicycle pump

The handle moves a piston in a metal cylinder (Figure 6.21). There
is a cup-shaped leather or rubber washer on the end of the piston.
This acts as a valve and lets air move in one direction only. The soft
edge of the washer fits closely to the sides of the cylinder.

push down

!

spring
T handle

pull up

handle
= - =
= spring =

<+«— cylinder ——»

T:—:T¢— leather washer

pressure

( :—:9 leather washer air out

g 3 J

upstroke downstroke

Figure 6.21 How a bicycle pump works

* Upstroke: The pressure below the piston is reduced. Atmospheric
pressure forces air between the washer and the wall of the cylinder.

* Downstroke: The pressure below the piston is increased. The
washer is pressed tightly against the walls of the cylinder,
making it airtight. When the pressure rises above the pressure
inside the tyre, the tyre valve opens and air is forced into the
tyre.
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T ®
chamber C

air

solid
piston

foot valve A (closed)
valveB —
(open)

Figure 6.20 A force pump
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KEY WORDS A bicycle pump with the washer reversed acts as a vacuum pump or

suction pump.

siphon a tube which can
move liquid using the Siphon
difference between the
pressure of the liquid and
atmospheric pressure

A siphon is a convenient way of removing liquid from a container
such as an aquarium or petrol tank. {

Activity 6.5: To show the action of a siphon

e Fill a tall jar with water. Submerge a long rubber tube so
that it fills with water.

® |eave one end in the water, close the other end with the
fingers (to prevent the water running back), and lift it out
of the jar. Lower this end until it is below the water level
in the jar. Open it and let water flow out into a second jar
(Figure 6.22).

The water flows so long as the end C is below water level A.
The further C is below A, the faster is the flow of water.

air pressure

L s

— * Now raise the second jar until it is higher than the first.
Water flows in the other direction. (The tubing must always

) ' be full of water and its ends must be under the water.)
Figure 6.22 A siphon

Activity 6.6: Vacuum How a siphbn works
cleaner The pressure at A and B is atmospheric. Therefore the pressure at

Can you explain how a C is atmospheric pressure plus the pressure due to the column of
simple vacuum cleaner water BC. Hence, the pressure at C is greater than atmospheric and
works? Remember that it the water can push its ' way out against the atmosphere.

oo et
ummary

In this section you have learnt that:

e Pressure is defined as the force acting per unit area. It can
be calculated using the equation p = F/ A.

® Pressure is measured in pascals (Pa), where 1 Pa equals a
pressure of 1 newton per square metre.

e Atmospheric pressure is caused by the weight of the column
of air above you pushing down on you. On a typical day this
is equal to 101 kPa.

® As your altitude increases the atmospheric pressure
decreases.

® A barometer is a simple instrument used to measure
atmospheric pressure. The pressure from the atmosphere
pushes the fluid up the tube.

1 atm is equal to 760 mmHg.
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Review questions

1. Define pressure and states its units.

2. A wooden block of mass 2.0 kg is 20 cm thick, by 10 cm wide by
30 cm tall. Calculate the minimum and maximum pressure this
block could exert on a surface.

3. Explain the causes of atmospheric pressure and why it changes
with altitude.

4. Describe how a barometer works and show that at 1 atm the
height of a column of mercury would equal 760 mm.

5. Calculate the pressure in Pa if the reading from a barometer is
820 mmHg.

6.2 Fluid pressure

By the end of this section you should be able to:

e Define the term fluid and state the similarities and
differences between liquids and gases.

¢ Define the term density and relative density and determine
each for a given body.

¢ Explain how the pressure in a liquid at rest varies.

® Apply the formula P = hpg and use it to solve problems
(including determining the pressure inside a fluid taking
into account atmospheric pressure).

e State Pascal’s principle, and apply it to solve problems and
explain applications (such as the hydraulic lift).

® Explain the use of a manometer.

® Demonstrate an understanding of, distinguish between and
calculate atmospheric, gauge and absolute pressure.

e State Archimedes’s principle and the principle of flotation.

¢ Distinguish between true weight and apparent weight of a KEY WORDS
body. flow smooth unbroken

e (alculate the buoyant force acting on the body in a fluid movement of a substance
and explain why bodies float or sink. fluid a substance that will

¢ (alculate the density of a floating body or density of a fluid flow e.g. gases, liquids

using the flotation principle. gases substances in a state
of matter where particles can

move about randomly and are

What are fluids? widely spaced, with no bonds

\ between them
Can you name a fluid? I suspect you came up with either water, an

oil of some sort, petrol.or maybe something like milk. However, I
doubt many; if any, of you came up with air. In physics a fluid refers
to a substance that will flow along a pipe. In common use fluids
tend to mean just liquids. However, in science fluids include all
gases as well as liquids

liquids substances in a state
of matter where there are
weak bonds between the
particles which are close
together but can still move

Grade 9 151




UNIT 6: Fluid statics

Another characteristic of fluids is that they can change their shape.
This means they always take the shape of the container they are put
in. For example, consider a rectangular glass box. A liquid and gas
will both fill the bottom of the container; however, a solid will not.

.

Figure 6.23 Natural gas is a fluid.

KEY WORDS

incompressible where the
volume of a substance stays
the same when force is
applied

density the mass per unit
volume of a substance

Table 6.2 Liquids and gases

Solid

Liquid

Gas

Figure 6.24 Fluids take the shape of their container.

There are still some very important differences between liquids
and gases. Perhaps the most important is the fact that gases can

be compressed by forces. You can squeeze a balloon filled with air
and its volume will go down. However, liquids are incompressible;
effectively this means the volume of a liquid stays the same when

force is applied:

Table 6.2 summarises the key properties of liquids and gases.

to match a container

Liquid Gas

Particles Quite close together, with no Far apart with no set pattern;
set pattern; particles can move | particles can move past each
past each other. other.

Bonding Weak bonds between the No bonding between the
particles particles

Can flow / change their shape | Yes Yes

Compressible

No; the particles are already
close together.

Yes; there is lots of space
between the particles.
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Fluid density

The density of any fluid may be calculated using the standard

equation for density:
* density = mass / volume

* p=m/V

* Density is defined as mass per unit volume.

As the particles are closer together in a liquid, liquids have higher
densities than gases. Table 6.3 includes some typical densities of

fluids.
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Table 6.3 Densities of fluids

Fluid Density (kg/m?3)
Mercury 13 600
Honey 1400
Water 1000
Sea water 1020
Diesel 950
Alcohol 800
Petrol 740
Air 1.20
Carbon dioxide 1.98
Nitrogen gas 1.25

Both temperature and pressure have an effect on the volume
of a fluid. Therefore the densities in Table 6.3 are at standard
atmospheric pressure (101 kPa) and a temperature of 20 °C.

For liquids it is fair to assume that the density is uniform
throughout the liquid (as they are incompressible). However, for
large volumes of gas the density increases as the gas gets closer to
the surface of the Earth (due to gravity). This is most noticeable in
the Earth’s atmosphere. As the altitude increases the air gets less
dense; the air is described as getting thinner.

What’s relative density?

The term relative density is often used to compare the density
between two fluids. In most cases this involves comparing the
density of a fluid to that of water; however, it could be any other
substance.

The relative density of a substance is the ratio between its density
and the density of water. For example, if something has a relative
density of two it means it is twice as dense as water. A relative
density of 0.25 means it has % of the density of water. You can
calculate relative density using:

* relative density = density of substance / density of water.
The relative density of alcohol would be:

* relative density = density of substance / density of water
* relative density = 800 kg/m’ / 1000 kg/m’

* relative density = 0.8.

Notice relative density has no units since it is a ratio.

If we are comparing two identical volumes of fluids then the relative
density can be calculated as the ratio of the masses of the same
volume of fluid:

* relative density = mass of substance / mass of equal volume of
water

Grade 9

Think about this...

Density is also often
measured in g/cm3. 1 g/cm?
is equal to 1000 kg/m*. How
would convert from g/cm? to
kg/m3 and vice versa?

relative density the ratio
between the density of two
substances

Determine the relative
density of:

1. mercury

2. carbon dioxide
3. petrol

4. honey.
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This method uses a density bottle (Figure 6.25) to find the
relative density of a liquid. A density bottle has a ground-glass
stopper, which fits exactly. There is a small hole in the stopper
through which liquid and air can flow out when the stopper is
put in the neck of the bottle. (This means that no air bubbles < Stopperfits exactly
can be trapped under the stopper, which would give a false

result.)

hollow stopper

® Weigh a clean, dry density bottle with its stopper (mass = A).

e Fill with water and put in the stopper. Water should come out
of the hole in the stopper. Dry the outside of the bottle and
weigh it again (mass = B).
e Pour out the water, rinse with some of the liquid whose
relative density is to be found. Fill with the liquid, put in the  Figure 6.25 A density bottle
stopper, dry carefully and weigh (mass = ().

mass of liquid  (C - A)

Relative density = =
EHAnVe e = hass of water (B-A)

DID YOU KNOW? Pressure in fluids

If the relative density of a We've already discussed atmospheric pressure but if we investigate
substance is relative to the pressure in fluids in general we find there are two key points to
density of water it is often consider:

called specific gravity. If the

object has a specific gravity
greater than 1, it will sink in * Atany given depth the pressure is equal in all directions.

* "Pressure increases with depth.

water (more on this later).
Pressure and depth

In any fluid the pressure increases with depth. The taller the column
of the fluid above you, the greater the pressure it exerts. You can see

— to watesfan this by conducting a very simple experiment.
/<7 rubber tube

// l«—— tall can
-

water

Take a tall tin can and carefully make several holes going up
one side (three or four should do it).

<«—— streams of water
Quickly fill the tin with water and observe how the water
L J squirts out of the holes.

You will notice that the stream from the bottom hole travels
Figure 6.26 The éffect of depth on further. This is because the water is under more pressure at the
s ' bottom of the can.

pressure
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We have already derived an equation for pressure in fluids in
Section 6.1: Watr

* p=hpg
* p=pressure in Pa

* h=depth of fluid in m

* p = density of fluid in kg/m’
* g = gravitational field strength (9.81 N/kg)

Be careful not to mix up p and p (the Greek letter rho); make sure
you look carefully before completing any calculations.

To recap:

Figure 6.28 shows a tank, filled with water of density p to a depth k.
The base of the tank has area A. What is the pressure on the bottom
of the tank?

Figure 6.27 Dams have to be

The pressure is caused by the weight of the water in the tank, thicker at the bottom in order to
pressing down on the bottom. withstand the greater pressure.

* Volume of water = h x A

* Mass of water = volume x density = p x h x A

* Weight of water =mass xg=pxhxAxg

* DPressure = weight/area=pxhxAxg/A=pxhxg.

This equation shows that the pressure increases with depth (h); in

fact the pressure exerted by the fluid is directly proportional to the dopin
depth of fluid. Dive twice as deep and the pressure exerted by the

water above you is doubled.

Worked example

Calculate the pressure exerted by the water at the bottom of a bottom of the tank is caused by
swimming pool 6 m deep. the weight of the water above it.

p = hpg State principle or equation to be used (pressure in fluids)

p =6 mx 1000 kg/m3 x 10 N/kg Substitute in known values and
complete calculation

density p

p = 60 000 Pa Clearly state the answer with unit
Using information in the
density table (Table 6.3)

calculate the pressure

Calculate the force this pressure would exert on a concrete
block with an area of 3 m?

p =F/ A State principle or equation to be used (definition of exerted by the fluid in the
pressure) following situations:
F=p x A Rearrange equation to make F the subject 1. Diving in sea water to a
F =60 000 Pa x 3 m? Substitute in known values and complete depth of 15 m.
calculation 2. The base of a column of
F =180 kN Clearly state the answer with unit mercury 760 mm tall.
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Pressure acts equally in all directions

In fluids, despite the pressure being caused by the column of fluid
above you, the pressure acts equally in all directions. If you imagine
a very small cube placed under water, the pressure on each cube
face would be same.

If you hold your hand up horizontally in front of you the pressure
on the top is the same as the pressure on the bottom. |

Technically there is a very small difference in the height of the
column of air on the top compared to the bottom (the thickness of
your hand) but essentially the pressure is the same,

Figure 6.29 Pressure is the same G B B LI )

in all directions on a small cube. You can show this using
another tin can. This time
make four or five holes at
the same depth around the
bottom of the can.

Pressure on the top

Again quickly fill it with

water and you can see all

the streams of water are the

same. In other words the

pressure is the same in all ~ Figure 6.31 Pressure is the same
Pressure on the bottom directions inside the can. in all directions.

=) ¢m

Figure 6.30 The pressure on the

top and on the bottom of your What about the effect of atmospheric pressure?

hand is essentially the same. - _ _ _
If you go swimming the pressure acting on you is not just due to

the water above you. You must not forget to include atmospheric

DID YOU KNOW? pressure.
This topic is called fluid

statics (or hydrostatics), / Atmospheric pressure

meaning we are dealing ‘ ‘ ‘ ‘ ‘
with stationary fluids. \

A moving fluid exerts
less pressure on its
surroundings. This is h
studied in hydrodynamics o :
and is very important when M Q=
it comes to keeping aircraft
in the air.

P = Patm*Pfluid

Figure 6.32 The total pressure on a swimmer

The pressure on the swimmer would be the sum of the pressure due
to the fluid and the atmospheric pressure. In terms of an equation
this could be written as:

* p :patm + hpﬂuidg
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Pascal’s principle

o Take two syringes of different sizes. Connect them with
plastic or rubber tubing. Fill the syringes and the tube with
water (Figure 6.33).

® Press one syringe with one hand, and the other with the
other hand. Feel how their forces differ.

E| : i Z|<_]

small force

liquid tubing
large force is exerted

Figure 6.33 Using water pressure to magnify a force.

If you conduct the experiment above the difference in the forces is
clear.

This difference comes down to the fact that liquids are
incompressible; this means they can transfer pressure from one
place to another. The force applied to the smaller syringe creates a
pressure inside the liquid. This pressure is transferred throughout
the liquid and is the same value everywhere. This pressure acts on
the larger syringe and because the area of the syringe is larger the

force exerted is also greater. Remember, from Unit 4, energy cannot

be created or destroyed. Just like the simple machines studied in

unit 5, if the output force gets bigger it must move through a smaller

distance.
This phenomenon is referred to as Pascal’s principle and it states:

¢ The pressure applied to an enclosed fluid is transmitted to
every part of the fluid, as well as to the walls of the container
without reducing'in value.

Pascal’s principle is used in the design and construction of simple
hydraulic machines. Figure 6.34 shows two different sized pistons,
which form part of a hydraulic'system.

If a force is applied to the left hand piston it will create a pressure
inside the fluid.

* p:Fl/Al

This pressure is transferred throughout the liquid. It is the same
everywhere.

* ponthe left = p on the right.

The piston on the right has a much larger area. The force from this
piston is equal to:

. F2:p><A2

Grade 9

Worked example

Determine the pressure
acting on a diver 20 m
below the surface.®

P =P+ NPy, Express
total pressure in terms of
atmospheric pressure and
pressure from fluid

® TIn this case, h =20 m
and p,,.,= 1000 kg/m*

p =101 000 Pa + (20 m

x 1000 kg/m? x 10 N/kg)
Substitute in known values and
complete calculation

p =301 000 Pa or 301 kPa
Clearly state the answer
with unit

Think about this...

Discuss with a partner why
this effect does not happen
in gases.

KEY WORDS

hydraulic machines
machines that rely on the
incompressibility of liquids to
do work

Pascal’s principle principle
stating that the pressure
applied to an enclosed fluid

is transmitted to every part of
the fluid without reducing in
value

Figure 6.34 Pascals principle
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KEY WORDS

hydraulic lift a hydraulic
machine used to raise heavy
objects

hydraulics presses a
hydraulic machine used to
shape metal or compress
materials into smaller volumes

hydraulic brakes a
mechanism which uses fluid to
transfer pressure from a foot
pedal to push brake pads onto
brake discs
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As A, is much bigger than A , F, will also be bigger than F,. In fact
if the piston has double the area the force will be doubled. If the
piston has ten times the area the force will be 10 times greater!

For example, let’s imagine the areas are:

A=2m* A=6m’

If a force of 100 N is applied on A  then the force at A, will be 300 N
(three times bigger). Let’s prove it though calculation:

p =F /A State principle or equation to be used (definition of pressure)
p =F,/ A, Relate to this context

p =100 N / 2 m? Substitute in known values and complete calculation
p =50 N/m? Clearly state the answer'with unit

From Pascal’s principle the pressure is the same throughout the
liquid so:

p =F,/ A, State principle or equation to be used (definition of pressure
expressed in this context)

F, = p x A, Rearrange equation to make F, the subject

F, =50 N/m? x 6 m* Substitute in known values and complete
calculation

F, =300 N Clearly state the.answer with unit

As the pressure is same throughout the fluid we can summarise the
relationship between the forces and areas in the following equation:

« F//A=F/A,

Hydraulic machines

Pascal’s principle has many applications; one of the simplest is the
hydraulic lift. This is used to lift a heavy object (such as a car)

off the ground. Just like our example, a small force is applied to a
smaller area piston. This creates a pressure inside a hydraulic fluid,
which is transferred to a larger area piston. This piston creates a
much larger force and, if the object to be lifted sits on top of the
large piston, it can be easily lifted by the smaller force at the smaller
area piston.

Other examples include hydraulic presses and hydraulic brakes (in
cars).

Hydraulic presses are used to shape metal (e.g. make motor-car
bodies), to press waste paper or cotton wool into bales of small size,
to press oil from oil seeds, and to lift cars so that work can be done
easily underneath.
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¢ Inner tube method: Turn the brick so that a smaller surface is
Use the inner tube of a bus or lorry tyre. on the bag. A larger pressure is needed to

Take out the valve, and fit about lift the brick as much as before.
1.5 metres of rubber tubing to the tube hasis
over the metal valve. Put a funnel into the
other end of the rubber tubing. Place a
large wooden board on the flat inner tube,
and stand on the board. Pour water into
the funnel. The inner tube fills with water

blow

and lifts you. ﬁ’
¢ Polythene bag method: g coloured___|
Connect some rubber tubing to a closed ;
polythene bag. Place a brick with its polythene bag
largest surface on the bag. Blow into the Figure 6.35 A hydraulic lift operated by air pressure

tubing. The brick is lifted.

The hydraulic press (Figure 6.36) changes a small force into a large

one. It consists of a cylinder and a piston, of large diameter, joined Think about this...

by a pipe to a second cylinder and a piston of small diameter. Water | Why is it a serious problem

or oil is pumped into the small cylinder, and it lifts the large piston if air bubbles get into the
with an enormous force. A release valve lets the liquid run away hydraulic brake lines of a car?
after the piston has done its work.

( A—}—— cotton being pressed

I piston or ram

pump

release valve © ©

s

valve

fluid reservoir

Figure 6.36 A hydraulic press, used to compress a bale of cotton

A car’s hydraulic brakes work in a similar way. By pressing the foot
on the brake pedal, a small force is applied to a piston with a small
diameter. The pressure is transmitted through oil pipes to pistons of
large diameter on the car wheels. These push the brake pads against
the brake discs to stop the wheels.
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-
B
-

E

Figure 6.37 Pressure gauges may
read absolute pressure or gauge
pressure.

KEY WORDS

absolute pressure the actual
pressure at a given point

gauge pressure the difference
between absolute pressure and
atmospheric pressure
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What is the difference between atmospheric, gauge
and absolute pressure?
When it comes to measuring the pressure of a fluid there are several

different terms you may come across. These include atmospheric
pressure, gauge pressure and absolute pressure: -

Absolute pressure

The absolute pressure is the actual pressure at a given point, It
is the true pressure of a system if all of the factors are taken into
account (including atmospheric pressure).

Atmospheric pressure

Atmospheric pressure has already been discussed. It is the pressure
of the surrounding air when measured at the surface of the Earth.
It has a value of 101 kPa. Atmospheric pressure varies depending
on the temperature, the altitude above sea level and the impact of
weather systems. : ;

Gauge pressure

Pressure gauges often give readings of gauge pressure rather than
absolute pressure. Gauge pressure is the pressure difference between
a system and atmospheric pressure.

If the pressure gauge reads 25 kPa it would mean 25 kPa above
atmospheric pressure (giving 126 kPa in total). If the gauge was
disconnected it would read 0 Pa even though the absolute pressure
isstill 101 kPa.

Gauge pressure can be calculated using the equation below:
X pg = ps 3 putm
*P,= gauge pressure

* P, =.'sys'tem pressure (the absolute pressure of the system being
measured)

* p,,, = atmospheric pressure

This is often used to determine the absolute pressure of the system.

~_For example, if a compressed gas was measured and the gauge

pressure of the system was 49 kPa then the absolute pressure would
be:

* pg:ps_patm S0 ps:pg+patm
* p,=49000 Pa+ 101000 Pa
* p.=150000 Pa

As gauge pressure is relative to atmospheric pressure it is possible to
obtain negative readings. A reading of —10 kPa would mean 10 kPa
below atmospheric pressure.
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System pressure (above atmospheric pressure)

Gauge pressure
(blue arrows)

Increasing pressure

System pressure (below atmospheric pressure)

Absolute pressure
(green arrows)

Zero pressure (absolute) =0 kPA
Figure 6.38 The relationship between gauge pressure, absolute
pressure and atmospheric pressure

Measuring pressure
We have already looked at simple and aneroid barometers. However, | Bourdon gauge an
there are a number of other ways to measure the pressure of a fluid. | instrument for measuring the
Most modern techniques use electronic pressure sensors. However, pressure of a gas
there are two other common mechanical techniques:. manometer a U-shaped tube
filled with liquid which is used
Bourdon gauge to measure pressure

A Bourdon gauge is a more practical instrument for measuring the
pressure of a gas (Figure 6.39). Inside the gauge is a flattened tube
with one end sealed. The tube is coiled round in a spiral. The open
end is connected to, say, the gas supply. As the gas presses in, it
causes the spiral tube to uncurl slightly. This makes the needle move
round the dial, indicating the pressure.

pressure /-~ 7
connection

Figure 6.39 A Bourdon gauge

Manometer

A manometer is a simple instrument often used to measure the
pressure of a gas supply. It comprises a U-shaped tube open at both
ends. The tube is filled with a liquid (this is often coloured to make
it easier to see).
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If one side of the manometer is connected to a system under
pressure, the liquid will move. For example, if one end was
connected to a gas supply the liquid would be pushed down as the
supply is at a greater pressure than the surrounding atmosphere.

The height difference between B and C can then be used to
determine the pressure of the gas supply.

* pressure of gas = atmospheric pressure + pressure due to the
column of liquid BC F

* pressureofgas=p +h, pg

Figure 6.40 A simple manometer  For example, if a water-filled manometer was connected to a gas
supply and the height difference (BC) was 9 cm the pressure of the
gas would be:

gas supply
- * pressureofgas=p +h, pg

* pressure of gas = 101 000 Pa+ 0.09 m x 1000 kg/m* x 10 N/kg

e

gas pressure

* pressure of gas = 101 900 Pa

t This would most likely be expressed as a gauge pressure of 900 Pa.
water

Figure 6.41 Using a manometer Forces in fluids
to measure the pressure of the gas ~ Objects seem less heavy in water. For example, it is easy to hold up a
supply friend horizontally in a swimming pool. Try doing this in air!

Figure 6.43 Despite their large mass elephants appear to be lighter

;\""

Figure 6.42 A manometer being underwater.
used There is a force from the water that pushes you up, acting against
gravity. This force is called a buoyant force (or sometimes
Think about this... upthrust). It arises due to the fact that as pressure increases with
If using a manometer to depth if you immerse an object in a fluid the pressure on the bottom
measure the pressure of will be greater than the pressure on the top.

!'n'g her PESEANE G2 why is This can be shown by considering the equation, p = hpg. The
it a good idea to use mercury?  difference in pressure can be found by using:
Why is water usually used for

gas supplies? * Ap=Ahpg
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N p Water
ptop
\AARA 4
— —
— -— Ap= pbottom'=, ptop
—_— ——
1 T 1 11 (0
(& J '
pbottom
Figure 6.44 The pressure is greater at a greater Figure 6.45 The pressure difference = Ahpg

depth in water, so there is a bigger force on the
lower surface of the block than on the upper
surface.

This difference in pressure means there is a difference in force
acting on the top and bottom of the object. The force on the bottom
is greater and so there is net force upwards.

If you hold a cork underwater and then release it the buoyant force

accelerates it towards the surface of the water. Equally if you drop _ .
a stone in the water it accelerates through the water much more Figure 6.46 The pressure dﬁerence
slowly than it did through the air as the buoyant force means the net leads to a force acting vertically

force acting on the stone is reduced. upwards.

The size of the buoyant force (F,) depends on a number of factors
including the density of the fluid and the volume of the object.

Buoyant forces are not just limited to liquids. Air alse provides a
buoyant force but it is very small (as the density of air is much less
than that of water). In order for it to have a significant effect the
volume of the object must be huge. Hot air balloons float’ in the air
due to the buoyant force of the air pushing them up, acting against
their weight.

Apparent weight

As we mentioned earlier, objects immersed in water (or any liquid)
appear to weigh less..Obviously their weight has not changed (w

= mg) but they now have an apparent weight. The buoyant force
pushes upwards, acting against'the objects weight and so the weight

Figure 6.47 The buoyant force
from the air keeps the hot balloon

in the air.
appears to 'drop.
The apparent weight may be calculated using the equation below: KEY WORDS
* apparent weight = weight - buoyant force buoyant force a force from
Gases (like air) also provide a buoyant force but it is usually too the water which pushes a
small to need thinking about. body upwards against gravity
This equation is more commonly used to determine the buoyant upthrust a force from the
force acting on an object: water which pushes a body

* buoyant force = weight — apparent weight upwards against gravity
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a)

weight

b)

weight

Figure 6.48 The forces acting on
an object a) in air b) in water

Figure 6.49 Measuring the
buoyant force acting on.a stone

KEY WORDS

Archimedes’s principle
principle stating that the
weight of the fluid displaced
by an object is equal to the
buoyant force acting on it
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Using a forcemeter we can easily determine the buoyant force acting
on a stone (see Figure 6.49).

Here the buoyant force is equal to:

buoyant force = weight — apparent weight State principle or equation
to be used

buoyant force = 6.0 N — 4.0 N Substitute in known values and
complete calculation

buoyant force = 2.0 N Clearly state the aniswer with unit

Archimedes'’s principle

You probably know the story of Archimedes in his bath.'King Hiero
had ordered a new gold crown, in the shape of a wreath of leaves.
The crown was the correct weight, but he suspected that the jeweller
had cheated him by mixing silver with the gold. Could Archimedes
find a way of checking the crown without damaging it?

Archimedes was in his bath when he thought of the solution. As
everyone knows, whenyou get in the bath, the water level rises
because your body displaces some of the water. Archimedes, seeing
how he could put this to use, leapt from the bath and ran down the
street shouting ‘Eureka!” which means ‘T have it!”

Here is how Archimedes tested the crown. He put a weight of gold
equal to the crown, and known to be pure, into a bowl which was
filled with water to the brim. Then the gold was removed and the
king’s crown put in, in'its place. This caused the bowl to overflow.

Archimedes was using the fact that gold is denser than silver, so

it takes up less space. He found that the new crown had a greater
volume than ene made of pure gold. It was indeed a cheat, and the
jeweller was punished.

Archimedes realised that when an object is immersed in a liquid it
displaces a certain volume of the liquid.

Volume of displaced liquid

Figure 6.50 A stone placed in a beaker of water will cause the level of
water to rise as it displaces its own volume.
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He determined that the weight of the displaced fluid was equal to
the buoyant force. Or in his own words:

* Any object, wholly or partially immersed in a fluid, is buoyed
up by a force equal to the weight of the fluid displaced by the
object.

In other words, the buoyant force acting on an object is equal to the
weight of the displaced liquid.

* buoyant force = weight of displaced fluid

The greater the volume of liquid displaced the greater the buoyant
force.

Use thin thread to tie an object (a stone, e Weigh the beaker and the displaced water.
metal weight or glass stopper is suitable)
to the hook of a newtonmeter (a spring
balance). Note its weight.

You have to find the buoyant force on the
object, and compare it with the weight of
water displaced.

* Weigh a beaker. Upthrust = weight of object in air — weight of

¢ Place an overflow can on the bench and object in water
fill it with water. When no more water
drips out of the can, place the weighed
beaker under its spout (see Figure 6.51).

Weight of displaced water = weight of beaker
with water - weight of empty beaker

e Lower the object carefully into the water
until it is partially immersed. Note the
apparent weight of the object.

e Weigh the beaker with the displaced water
in it.

e Replace the beaker and water under the
spout. Lower the object into the can until
it is totally immersed but not touching

the bottom of the can. Note the apparent
weight of the object. Figure 6.51 Testing Archimedess principle

We can modify our equation for apparent weight in light of
Archimedes’ principle:

* apparent weight = weight — buoyant force
* buoyant force = weight of displaced fluid
* apparent weight = weight — weight of displaced fluid
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KEY WORDS

law of flotation law stating
that if the buoyant force is
equal to the weight of the
object then the object will
float

Figure 6.53 The ship floats due to
the law of flotation.
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Floating and sinking

Whether or not an object floats or sinks depends on the weight of
the object and the size of the buoyant force acting on the object.

buoyant force '

weight

a b C

a — weight is greater than buoyant force, so the stone sinks

b —weight is equal to the buyoyant force, so the cork floats

¢ — weight is less than the buoyant force so the balloon rises

Figure 6.52 The relative sizes of the buoyant force and the weight
determine whether an object will float.or sink.

In order to float an object must displace a volume of fluid (liquid or
gas) equal to its own weight. This is called the law of flotation.

If the weight of the volume of fluid displaced is equal to the weight
of the object then the object will float.

A large steel ship is able to float because it displaces such a large
volume of water. This volume of water has the same weight as the
ship.

When you step into a small boat you might notice the boat sinks
down alittle in the water. This is because as the weight of the boat
increases it needs to displace a greater volume of liquid in order to
float, and so it sinks down lower in the water. A heavily loaded boat
sits much lower in the water than a lightly loaded boat.

Boat (not loaded)
Boat (loaded)

Figure 6.54 A boat that is Figure 6.55 A boat that is heavily
not heavily loaded displaces a loaded needs to displace a much
smaller volume of liquid in order  larger volume of water in order to
to float. float.
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In the late 19th century greedy ship owners were overloading their
ships and several ships sank as a result. The Englishman Samuel
Plimsoll developed the waterline (or more commonly the Plimsoll
line). This was a line that by law must be painted on all large ships.
For safety reasons, when the ship is fully loaded the level of the
water must not be above the Plimsoll line.

Worked example

A toy submarine has a weight of 6.2 N in air. When immersed
in water it has a weight of 4.6 N. Determine the buoyant force
and the weight of water displaced

buoyant force = weight - apparent weight State principle or
equation to be used

buoyant force = 6.2 N — 4.6 N Substitute in known values and
complete calculation

Figure 6.56 The Plimsoll line on
a ship

buoyant force = 1.6 N Clearly state the answer with unit

weight of displaced fluid = buoyant force Make it clear the two
quantities are equal from Archimedes’s principle

e weight of displaced fluid = 1.6 N Clearly state the answer with Think about this...
unit If you look carefully at the

image of the Plimsoll line you
can see that there are several
different lines depending on

What about density? whether the ship is in fresh

If, even when fully immersed, the weight of the volume of liquid water, salt water, cold water
displaced is less than the weight of the object, then the object will (North Atlantic) or warm
sink. A small cube of steel does not displace enough water to float. water (tropical). Why is this?

However, if you hammer out the steel into a bowl shape it displaces
a greater volume of water and so will float.

/\

$

Figure 6.57 The same mass of steel will sink or float depending on its
shape and so the amount of fluid it displaces.

In other words, if the density of the object is greater than the density
of the fluid it will sink.

This means we need to consider the relative density between the
object and the liquid. If the relative density is less than one the
object will float (as the weight of the object will be less than the
weight of the volume of liquid it displaces). If the relative density is
more than one the object will sink (as the weight of the object will
be more than the weight of the volume of liquid it displaces). We
can modify our previous equations to include the density of the
object and the density of the fluid.
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Worked example

A floating wooden block has a volume of 0.4 m* and displaces
0.3 m? of water. Determine the density of the block.

Posie dVobje o = PaviaVpuia State principle or equation to be used (a

version of Archimedes’s principle)

Potiect = P Vi / Vobje .. Rearrange equation to give p

= (1000 kg/m? x 0.3 m*) / 0.4 m? Substitute in known
values and complete
calculation

object

pobject

= 750 kg/m? (or a relative density of 0.75) Clearly state
the answer
with unit

pobject

e w=mgandp=m/V

* weight of object =1, ¢and so weight of object=p . .V, &

* weight of displaced liquid = m,,, gand so weight of displaced
fluid = pﬂuidVﬂuidg

If the object is floating then:

* buoyant force = weight of displaced liquid = weight of object

So:

* Poviect Vovject& = PriaVia8

The g’s cancel, giving:

* Potject Vovjeet = Ppaa pusa

This equation only applies if the object is floating.
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In this section you have learnt that:

e A fluid is any substance that can flow. This includes gases as
well as liquids.

® (Gases may be compressed but liquids are incompressible.

¢ Density is defined as the mass per unit volume and it may be
calculated using the equation p = m / V. Density is measured
in kg/m?3.

¢ The relative density of a substance is the density of the
substance compared to another (e.g. compared to water).

e In fluids the pressure increases with depth and is the same
in all directions.

¢ In fluids the pressure due to the fluid is equal to p = hpg.
The total pressure is equal to the pressure due to the fluid
plus atmospheric pressure.

® Pascal’s principle states that liquids transfer pressure from
one place to another without any reduction in pressure.

¢ (Gauge pressure is the difference between absolute pressure
and atmospheric pressure.

¢ A manometer is a simple U-shaped tube filled with liquid
used to measure pressure.

¢ The apparent weight of a body is equal to the weight of the
object minus the buoyant force acting on it.

e Archimedes’s principle states that the weight of the
displaced fluid is equal to the buoyant force acting on the
object.

e The principle of flotation states if the buoyant force (or
weight of displaced fluid) is equal to the weight of the
object then the object will float.

¢ If the object is floating then the density of the floating
object can be calculated from: PotiectVopject = Puia uig Where

Vg 1s the volume of the displaced fluid.

Review questions

1. Explain what is meant by the term fluid and give three
examples.

2. Calculate the pressure‘caused by sea water when diving to a
depth of 100 m. What is the total pressure acting on the diver?

3. State Pascal’s principle and describe one of its applications.

Grade 9 169




UNIT 6: Fluid statics

Two pistons are connected together to make a hydraulic lift. The
smaller piston has an area of 0.05 m*and the larger piston has
an area of 2 m*. Calculate the following:

a) The pressure in the fluid and the force at the larger piston if
the force on the smaller piston is 50 N.

b) The pressure in the fluid and the force from the smaller
piston required to lift a car of mass 1200 kg.

Describe the relationship between the buoyant force and the
weight of an object if the object:

a) is floating
b) is sinking

c) isrising up through the water.

End of unit questions

1.

10.
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An elephant has a mass of 3200 kg: Each of its feet covers an
area equal to 0.08 m*, Calculate the pressure from each foot.

Describe what causes pressure in gases in terms of the particles
in the gas.

Describe some similarities and difference between liquids and
gases.

How deep under water would you need to be in order to be at
double atmospheric pressure?

Explain the meaning of the terms atmospheric pressure,
absolute pressure and gauge pressure.

Describe the use of a manometer and calculate the pressure of a
gas supply that causes a column of water 15 cm high.

State Archimedes’s principle and explain how this leads to the
law of flotation.

Explain why a heavily loaded boat sinks lower in the water.

The weight of an object is measured in air to be 7.0 N. The
object is then immersed in water and its apparent weight is
measured to be 4.0 N. Determine the buoyant force and state
whether or not the object floats.

A large ocean liner floating in the sea has a volume of

375 000 m* and displaces 50 000 m* of sea water. Determine the
density and mass of the ship. Explain why, despite being made
of metal, the ship is able to float.

Grade 9



Temperature and heat Unit 7

Section Learning competencies

7.1 Temperature and ® Explain the difference between heat and temperature.
heat (page 172) e Define the term thermal equilibrium.

7.2 Expansion of e Describe the thermal expansion of solids and derive the expression
solids, liquids and for the linear and surface expansion of solids.
gases ¢ Find the relationship between the coefficient of linear, area and
(page 179) volume expansion and solve related problems.

Know applications of the thermal expansion of materials.
Distinguish between apparent and real expansion of a liquid and
solve problems involving the expansion of liquids using V = V yAT.
e Explain the abnormal expansion of water.
e (Compare the expansion of gases with the expansion of solids and

liquids.
7.3 Quantity of heat, e Describe the factors that affect the amount of heat absorbed or
specific heat liberated by a body.
capacity and heat | ® Define the terms specific heat capacity and heat capacity and
capacity calculate the amount of heat energy absorbed or liberated by a
(page 191) body using Q = mcAT.

¢ (alculate the heat capacity of a body.

o Identify different units of heat energy.
Explain the significance of the high specific heat capacity of
water.

e Use the relationship heat lost = heat gained to solve problems
involving heat exchange.

e Describe the uses of a calorimeter.

7.4 Changes of state e Define the terms latent heat, latent heat of fusion and latent heat
(page 199) of vaporisation.
e Solve problems involving change of state.

On a hot day our ice cream melts more quickly, but why? On a cold
day we may need a coat and if its gets very cold it might even snow.
Our perception of temperature is all relative; what’s cold to us might
be described very differently from a resident of northern Canada!

The concepts of heat and temperature are not just used in weather
forecasting. The bread in'an oven needs to be baked at just the
right temperature, the wheels are fitted onto a train’s axle using
low temperatures in a technique called shrink fitting, and air
conditioning and central heating systems only function due to our
understanding of heat and temperature.

This unit looks at the meaning of the terms heat and temperature,
the effects of different temperatures and some applications that rely
on these phenomena.
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KEY WORDS

atoms the smallest parts of
a chemical element that can
take part in a reaction

average kinetic energy the
mean kinetic energy of all the
particles in a substance

ions an atom or group of
atoms that has acquired an
electrical charge by gaining or
losing one or more electrons

molecules the smallest unit
of a substance, consisting of a
group of atoms, which retains
the chemical and physical
properties of the substance
particles small units of

matter such as atoms, ions
and molecules

100°C

100°C

Beaker A Beaker B

Figure 7.1 Two beakers of bozlmg
water

Figure 7.2 A hot day. But what is
the difference between heat and
temperature?
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7.1 Temperature and heat

By the end of this section you should be able to:
® Explain the difference between heat and temperature.

e Define the term thermal equilibrium.

What is heat?

When we cook food, we might say we are heating it up. The
temperature of the food increases. It seems like heat and temperature are
the same thing, but they are not!

We already know that matter is made up of moving particles
(molecules, atoms and ions). In solids these particles are tightly
bonded together and so they can only vibrate, whereas in fluids
(liquids and gases) the particles can move around more freely.

Heat is one form of energy; it is therefore measured in joules and
is a scalar quantity. Heat is a flow of energy from hotter regions to
colder ones.

* Q=3E +3U

Q is the symbol used for heat energy. From Unit 4, E, is kinetic
energy and U'is potential energy. Remember, ~ means sum of.

Imagine two beakers of boiling water. Beaker A contains 1 kg of
boiling water and beaker B contains 0.5 kg of boiling water. They are
both at the same temperature, 100 °C, but there are more particles
in beaker A and so there is more energy contained within it than
with beaker B:

When we heat up a substance, we are transferring energy to the
substance. This means one of two things could happen.

* The particles of the substance gain kinetic energy and so move
more rapidly.

and/or

* The bonds between the particles in the substance are broken
and the potential energy of the particles increases. When this
happens, the substance changes state.

What is temperature?

Temperature is a measure of ‘hotness’ The higher the temperature,
the hotter the object. The complication is that ‘hotter’ may not mean
more heat when comparing two objects.

The temperature of a substance is a measurement of the average
kinetic energy of the particles within the substance. If the particles
in a substance have a higher average kinetic energy then the object
is at a higher temperature. That is to say if the particles are, on
average, moving faster then the object is at a higher temperature.
The water molecules in a glass of water at 50 °C are, on average,
moving faster than those in a glass at 20 °C.
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Water molecules

20°C

Water molecules

50 °C

Figure 7.3 On average, the particles are moving faster if the object is
at higher temperature.

10 kg of water at room temperature may contain more energy

than a tiny metal spark from a sparkler. However; the spark is

at higher temperature (maybe 500 °C compared with 25 °C).
Temperature is a measure of the average kinetic energy of the
particles; heat is the total thermal energy inside the substance (the
total kinetic and potential energies added together). On average, the
particles are moving faster in the spark; however, there are far more
particles in the water, all with a kinetic energy and potential energy.

It is important to notice we use the average kinetic energy. In any
substance some particles will be moving faster than others and so
these particles will have more kinetic energy than the others.

0°C
0
o
3
[}
o
@] o
= 1000 °C
©
oy
Ko
£ 2000 °C
P

Speed

Figure 7.5 This graph shows how many particles have a given speed at
three different temperatures.

Grade 9

Figure 7.4 The water may contain
more heat energy even though it
is at a lower temperature than the
spark.

Think about this...

As the temperature of a body
indicates the average kinetic
energy of the particles, it
does not depend on the
number of particles present.
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DID YOU KNOW?

At room temperature all
gases will have the same
average kinetic energy. This
means the lower mass gas
particles are, on average,
travelling faster. One of the
reasons there is very little
helium in the atmosphere
is because they are so light
a significant number of
helium atoms are going fast
enough to escape the Earth’s
gravitational pull and float
off into space. The heavier
gases, like oxygen, nitrogen
and carbon dioxide are on
average moving slower and
so don’t escape.

KEY WORDS

absolute zero the
temperature at which a
substance has no thermal
energy

Celsius scale a temperature
scale where the freezing point
of water is fixed at 0 degrees
and the boiling point at 100
degrees C

Kelvin scale a temperature
scale that uses absolute zero
as one of its fixed points

Figure 7.7 The Swedish
astronomer Anders Celsius first
proposed the Celsius scale in
1742.
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If we look at Figure 7.5, we can see that at 0 °C, most particles
have a relatively low speed and hence a relatively low kinetic
energy — only a relatively small number of particles have a high
speed and a high kinetic energy. As a substance is heated to a
higher temperature, for example 1000 °C, the graph shows us that
the average speed and consequently average kinetic energy of'the
particles is greater than at 0 °C.

Temperature scales

A range of temperature scales have been used in the past, though
scientists now tend to deal with'the Kelvin scale (K) or.the Celsius
scale (°C). The Fahrenheit scale (°F) is still used by the United States
but is rarely used by the scientific community.

To design a temperature scale two fixed reference points have to be
used. The scale is then based on these points with a certain number
of jumps in between them.

For example, in the Celsius scale, the freezing point of water is given
as 0 °C, with the second fixed point being the boiling point of water
- the difference between the two fixed points is divided into 100
equal divisions so the boiling point of water is 100 °C.

Figure 7.6 The freezing point and boiling point of water were the two
[fixed points used on the Celsius scale.

The Kelvin scale uses absolute zero as one of its fixed points. This is
the temperature at which a substance will have no thermal energy
and it is not possible to get a lower temperature (0 K or -273.15 °C).
The Kelvin scale has a units symbol of K; there is no degree symbol
included.

The Kelvin and the Celsius scales are often used together as they
have the same scale division. This means a change of 20 K is the
same as a change of 20 °C.

The Kelvin scale may seem unusual as it uses fixed points that we
are not familiar with but, importantly, temperatures measured in
the Kelvin scale are directly proportional to the average kinetic
energy of the particles present. For example, the particles in a block
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of iron have on average twice as much kinetic energy at 200 K than DID YOU KNOW?

at 100 K.

The Celsius scale is

named after the Swedish
astronomer Anders Celsius.
In 1742 he proposed the

The Fahrenheit scale uses one fixed point as the temperature of an
ice, water and ammonium chloride mixture (0 °F) - the second
fixed point is normal body temperature (98 °F).

The diagram in Figure 7.8 shows how these temperature scales Celsius temperature scale,
compare. We will use the Celsius and Kelvin scale in our with one key difference. He
calculations. set his lower fixed point
Temperature Scales (the freezing point of water)
Farenheit Celsius Kelvin as 100 °C and the boiling
Q Q Q point as 0 °C. This meant
Boiling using his scale the number
Fomt of 212°F 100°C 873.15K got smaller as the substance
got hotter! The scale was
Highest reversed the year after he
Temp. 134°F 56.7°C 330K died.
ever recorded
in US
Freezing - 0°C 97315 K Think about this...
Water O°F -18°C 255 K At absolute zero a substance
will have zero internal energy.
‘Moon at - 7sC Kk What does t.his jcell you
its coldest about the kinetic energies
Abzseorlgte 460°F 273°C 0K and ‘potential energigs of thg
8 - 8 particles? Do you think it will
Q U ‘J be possible to reach absolute
zero?

Figure 7.8 Comparing different temperature scales

DID YOU KNOW?

A bouncing ball :
The place that has the world’s

If a ball is bounced repeatedly, it gains heat energy and its highest average temperature
temperature increases. The photographs in Figure 7.9 show thermal is Dalol, Ethiopia, in the
images of a ball before and after the ball is bounced. The higher Danakil Depression. The
temperatures are shown progressively in red, orange, and yellow; average temperature is an
green and blue indicate lower temperatures almost unbelievable 35 °C,
Look at the temperature scales down the side of the photos — what or 308 K.

temperature scale do you think is'being used and where has the heat
energy come from to increase the temperature of the ball?

NASA/IPAC a7.9 NASA/IPAC a77

How would you convert a
temperature recorded on
the Celsius scale into a
temperature on the Kelvin
scale (K) and vice versa?

749

Before bouncing After bouncing

Figure 7.9 Bouncing a ball will increase its temperature.
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heat

Figure 7.10 As the particles
vibrate more they spread out and
so the substance expands.

HEAT
ENERGY
A — B

Figure 7.11 A and B are in
thermal contact. A is hotter than
B; it has a higher temperature.

Think about this...

The concept of thermal
equilibrium allows us to
measure temperature.
Imagine our object B

is a thermometer; what
temperature will the
thermometer read when it
is at thermal equilibrium
with object A? Will this
temperature be exactly
the same as the original
temperature of A?
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What happens when a substance absorbs heat
energy?

As a substance absorbs heat energy, the particles vibrate more (in

a solid) or move faster (in a liquid or gas) as the heat energy is
converted into the kinetic energy of the particles as the temperature
rises. As the particles gain more energy, we can see that they move
further apart from each other, which means the substance will
expand (increase in size).

The diagram in Figure 7.10 shows how the particles in a solid move
further apart as the solid is heated.

The expansion of substances on heating is called thermal
expansion. This happens in solids, liquids and gases. We will deal
with this in more detail in Section 7.3.

Thermal equilibrium

Heat energy flows from a hotter body to a colder body. Place
your hand near an oven and you can feel the heat energy flowing
into our hand. It feels hot! Place your hand inside a fridge and the
heat energy flows from you into the fridge, it feels cold. An ice
cube in boiling water will absorb heat energy from the hotter water,
but the same ice cube in deep space will radiate heat energy to its
surroundings.

When there is a movement of heat energy from a hotter object to

a colder object, we say that the two objects are in thermal contact.
Objects in thermal contact do not have to be in physical contact
but they could be touching each other. So, we would say that the ice
cube and the boiling water are in thermal contact with each other.

Imagine that we have two objects, A (at 90 °C) and B (at 50 °C). A
and B are'in thermal contact. There will be a net flow of heat energy
will flow from A to B.

As heat energy is lost from A, the particles in A will slow down.
They have, on average, less kinetic energy and so the temperature of
A will decrease. The opposite happens at B. As B gains heat energy,
the particles in B move faster, their average kinetic energy will
increase and so the temperature of B rises.

This process of heat loss from A and heat gain by B will go on until
A and B both reach the same temperature. At this point, thermal
equilibrium is reached (heat loss from A will equal heat gained by
B so that there is no net movement of heat energy between the two
bodies).

* If two bodies are in thermal equilibrium, they will also be at
the same temperature.

The details of how two bodies in thermal contact obtain thermal
equilibrium are governed by the first and second laws of
thermodynamics.
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First law of thermodynamics

The first law of thermodynamics has more than one form but all are
really different ways of saying the same thing. It is essentially the law
of conservation of energy; that is, that energy cannot be created or
destroyed but can be transformed into other forms.

Imagine a gas that has a certain internal energy (the sum of the gas
particles’ kinetic and potential energy). The increase in internal
energy of the gas, AU, will be equal to the heat energy it has
gained, AQ, plus any work done on the gas, AW (for example if it is
compressed).

* AU=AQ+ AW

* AU = change in internal energy in ]

* AQ =heat energy added to system in |
* AW=work done on system in J

Notice in this case AU is the internal energy of the gas. Even though

it is the sum of the kinetic and potential energies of the particles in
the gas it is essentially a potential (stored) energy in the gas, hence the
symbol U. All these terms are energies and so measured in joules.

We can see from the equation that if no work is done (AW = 0), the
heat energy we add to the object will equal the increase in internal
energy. This means the temperature of the object will rise. In other
words, energy has not been created or destroyed, just transformed
into other forms.

We can also increase the internal energy by doing work on the
substance. Imagine the gas inside a pump. If we rapidly compress
the pump with our thumb over the end we are doing work on the
gas inside it. In this case the work goes into increasing the internal
energy of the gas. The gas gets hotter.

The equation may be used to calculate the change in internal energy; if
there is work being done and there is a flow of heat into a substance.

For example, consider a gas that is being heated and compressed.
There is a heat flow into the gas of 500 ] and 200 J of work is done on
the gas by compressing it. The change in internal energy is:

AU = AQ + AW State principle or equation to be used (First law of
thermodynamics)

AU =500 ]4200 ] Substitute in known values and complete calculation
AU =700 ] Clearly state the answer with unit

However, what if the object is hotter than its surroundings? Imagine
a cup of tea. If you stir it really fast you might do 20 J of work on the
tea. At the same time there has been a flow of heat from the tea to the
surroundings of 100']. What is the change in internal energy?

AU = AQ + AW State principle or equation to be used (First law of
thermodynamics)

AU=-100] + 20 ] Substitute in known values and complete calculation

AU = -807] Clearly state the answer with unit

Grade 9

Figure 7.12 Heating or doing
work on a gas increases its
internal energy and so its
temperature.

DID YOU KNOW?

There is also a zeroth

law of thermodynamics,
which states that if object

A and B are individually in
thermal equilibrium with
another object C, objects A
and B are also in thermal
equilibrium with each other.
This law has important
implications - it means that
it Cis our thermometer,

it will indicate the same
temperature for both
objects A and B.

KEY WORDS

expand to increase in size

thermal contact when there
is a movement of heat energy
between a hotter and a colder
object

thermal expansion the
increase in size of a substance
as a result of heating

thermal equilibrium
situation where there is no
net movement of heat energy
between bodies
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In this case the tea has lost 100 J to the surrounds so AQ = -100

J. The overall change in internal energy is —80 J, so the tea’s
temperature will fall. Theoretically it is possible to stir it fast enough
to keep the tea at the same temperature. In which case AU = 0] and
so AQ = -AW, but you would have to stir it very fast!

Second law of thermodynamics

The second law of thermodynamics concerns the direction of heat
flow between two bodies. Usually, as we have seen when we looked
at thermal equilibrium, heat energy flows spontaneously from hotter
objects to colder objects. The second law of thermodynamics might
be expressed as: /

Figure 7.13 Doing work on a cup  * Heat generally cannot flow spontaneously from a material at
of tea as heat flows from the cup lower temperature to a material at higher temperature.

to the surroundings. Heat energy will not flow from a colder object to a hotter one

spontaneously unless work is'done. Energy must be used to reverse
the usual flow of heat energy. This principle is used in refrigerators,
freezers and air conditioning units. The contents of a fridge are
cooled by a liquid evaporating, but work has to be put in so as to
condense the gas for further use.

HEAT

. ENERGY .

Figure 7.14 There is a net energy

flow from hotter to colder objects.

HEAT . .
ENERGY In this section you have learnt that:
Heat is energy transferred from hotter regions to cooler
ones.

WORK ® The temperature of a substance is an indication of the
average kinetic energy of the particles and the Celsius and
Kelvin scales are both temperature scales.

Figure 7.15 Energy will flow from

colder to hotter objects if work is ] )
done on the system. : ¢ 0On heating, the particles of a substance move faster and

move further apart so that a substance expands on heating.

¢ The first law of thermodynamics states that during heat
transfer processes, energy cannot be created or destroyed.

® The second law of thermodynamics states that heat energy
—— will flow from hot objects to colder objects and that if work
is put in, heat energy can be removed from a cold object.

e When bodies are in thermal contact, heat energy flows from
hot objects to cold objects until thermal equilibrium is
reached and the bodies are at the same temperature.

|
! : : e L . B
' .l ! Review questions

1. What will be the key difference in the energy of the particles in
Figure 7.16 In a fridge heat iron at 250 K and 500 K?
flows from inside the fridge to its
surroundings even though it is at
a lower temperature.

2. Explain why a solid expands on heating.
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3. Describe what happens, in terms of the movement of heat
energy, when a hot object is in thermal contact with a cold
object. Explain how this process could be reversed.

4. Convert the following temperatures to the Kelvin scale:

a) -273.15°C
b) 0.0°C _
¢) 1000 °C. f
By the end of this section you should be able to: 4 ! P /
e Describe the thermal expansion of solids. A -_ fo. gl
e Derive the expression for the linear and surface expansion ; f :
of solids. - \ A\ N\
¢ Find the relationship between the coefficient of linear, area NG NN

and volume expansion and solve related problems.
e Know applications of the thermal expansion of materials.

e Distinguish between apparent and real expansion of a
liquid. .| substance material or matter

e Solve problems involving the expansion of liquids using V =
V yAT.

e Explain the abnormal expansion of water.

e (Compare the expansion of gases with the expansion of
solids and liquids.

“The expansion of slids

We have already seen that when a solid is heated, its particles
move further apart and hence the solid expands (increases in
size). The ball and ring'experiment shown in Figure 7.17 is a good
demonstration of the expansion of a solid.

i F,
cold ball /| «— metal ball hot ball «— metal ball
A

fits ring : —— h is too big

Figure 7.17 The hoop and ball experiment.

The cold metal ball easily passes through the ring. After heating, the

metal ball expands and it is no longer able to pass through the ring. Figure 7.18 When Concorde flew

at over twice the speed of sound,
How much a solid expands on heating will depends on the it got so hot that it increased its

substance and how much its temperature increases. 61.6 m length by about 30 cm.
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e

before heating

Al ls
e

In
after heating

Figure 7.19 Linear expansion of a
narrow metal rod.

KEY WORDS

coefficient of linear
expansion the increase

in length of a 1 m rod of
given substance when its
temperature increases by 1 K
linear expansion the increase
in length of a substance due
to heating
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Linear expansion of solids

When a metal rod is heated it expands and increases in length. This
expansion is referred to as linear expansion. The diagram in Figure
7.19 shows a metal rod, of length I (measured in metres), before
and after heating.

The rod’s temperature has increased by AT. It increases in length
on heating; the increase in length, Al, is the difference between the
length before heating, [, and the length after heating, | . This could
be written as:

« A=l -1

So, for an increase in temperature of AT, the fractional increase
in length = Al/l. If a 50 cm rod expanded by 2 cm the fractional
expansion would be:

* fractional increase = Al/l.
* fractional increase = 2/50
* fractional increase =1/25 or 0.04

The fractional increase in length per unit of temperature (°C or K)
increase is given the symbol a. It is found by dividing the fractional
increase by the increase in temperature, AT.

* a=Al//AT
Which is the same as:
* a=Al/I AT

a is also known as the coeflicient of linear expansion for the solid.
It represents the increase in the length of a 1 m rod of a given
substance when its temperature increases by 1 K. It is measured in
/K or K.

So, theiincrease in length of a heated rod, Al, can be found by
rearranging the above equation.

. Al:achT

The values for the linear expansion coefficient of some solids are
shown in Table 7.1.

Table 7.1 The linear expansion coefficients of some solids

Substance Linear expansion coefficient (x10-°K™?)
aluminium 2.3
copper 1.7
brass 1.9
iron 1.1
concrete 1.2

This means that a 1 m iron rod will expand by 1.1 x 10° m for every
1 Krise in temperature. With these values, we can now calculate the
increase in length of a material.
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Worked example

Calculate the increase in length of a 50 cm brass rod that is
heated from 25 °C to 70 °C.

Al= o [ AT Express Al in terms of known factors
In this case [ = 0.50 m and AT =70 °C - 25 °C =45 °C

Al=1.9 x 10°K? x 0.50 m x 45 °C Substitute in known values
and complete calculation

Al = 4.3 x 10*m Clearly state the answer with unit

Calculate the length of an iron rail at 400 °C, when it is
exactly 100 m long at 200 °C.

Al = o [ AT Express Al in terms of known factors
In this case [ = 100 m and AT = 400 °C - 200 °C = 200 °C

o Al=1.1x10°K"?x 100 m x 200 °C Substitute in known
values and complete calculation

e Al=0.22 m Clearly state the answer with unit

Therefore, length of rail at 400 °C=100 m + 0.22 m = 100.22 m
Ensure new length is calculated not just left as Al

Surface (area) expansion of solids

In the examples we have looked at in linear expansion, the sample
has been long in comparison to its height and width, so that the
only significant expansion is in length. In practice, many objects
are not long and thin and we need to develop a strategy to deal
with these objects. We will start by looking at the expansion, in two
dimensions, of a metal plate. .

after heating
surface area = Ay,

before heating
surface area = A,

Figure 7.21 Two-dimensional expansion of an object

As the plate is heated to cause an increase in temperature, AT, it

expands in width and height such that the surface area when heated,

A,, is larger than the original surface area, A . So:

© AA=A -A

Grade 9

Activity 7.2: Expansion
calculations

Calculate the increase in
length of a 27 cm brass rod
that is heated from 10 °C
to 100 °C. o, = 1.9 x 10°°
K.

Calculate the length of a
concrete section of a bridge
at 45.00 °C, when it is
25.000 m long at 18.00 °C.
a =2.2 x 10 K.

concrete

Think about this...

Why do you think that it is
safe to build a bridge made
out of concrete reinforced

with iron?

Figure 7.20 It is very important
to consider the surrounding
temperature and temperature
variations when laying train
tracks.
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Activity 7.3: Surface area
expansion

Calculate the increase in
surface area of an iron drain
cover with a surface area of
0.75 m? at 20 °C, when it is
heated to a temperature of
53 °C.

B,, = 2.2 x 107 K

before heating
surface area = A; = 12

.I |
le

after heating
surface area = A, = /2

ol AT

Iy = lg + oL IAT

o o I AT

Iy = lg + oL IAT

Figure 7.22 Relating linear
expansion to surface expansion
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The fractional increase in surface area, B, per unit rise in
temperature (°C or K) is given by:

* B=AA/AAT
© AA=BAAT

What is the relationship between o and p for a
given substance?

We will start by recalling what B, the surface expansion coefficient,
means and rewriting the expression: '

* B=AA/AAT

* B=A -A/AAT

Therefore:

* BAAT=A -A

Making A, the subject of the equation:

« A =BAAT+A "

which, after simplifying, gives:

* A, =A (1+pAT) - this expression. will be of use later.

We will now write another expression for A , in terms of a, the
linear expansion coefficient. If a square body of length [ is heated
such that its temperature increases by AT, each side increases in
length; AL, by al AT (see the section on linear expansion).

Consequently, the surface area of the heated body, is give by A, =1 2.

L, the length of each side of the heated body is related to [:

o 1 =1+alAT

Consequently;

* A =17=(L+a ATy =11+ aAT)*=1>(1 + 20AT + o’AT*)
* A =1%(1+20AT + &’AT?)

We can further simplify this last form of the expression:
ANLY=A

oA = A1+ 20AT + ?AT?)

As a is a very small number, AT will be very small compared
to 2aAT and so we will make an approximation and not include
this small term in the final expression. In other words, a?’AT*is
approximately zero, so:

* A =A(1+2aAT)

We can now compare this expression with the one we obtained
earlier in terms of {:

* A =A(1+pAT)
Now we can see that BAT = 2aAT and therefore § = 2a.
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Remember, that this is an approximation but a very good one. We
do not find tables of 3 values for substances as they are obtained
from a values using B = 2a.

Volume expansion of solc

We now need to consider the expansion of a solid in three
dimensions, where the length, breadth and height of the substance
all increase on heating.

'j_jefor'e"heating
As the block is heated to cause an increase in temperature, AT, it \ velupe = Ve
expands in width, height and breadth such that the volume when

heated, V , is larger than the original volume, V.
So:
* AV=V -V

The fractional increase in volume, y, per unit rise temperature (°C :
or K) is given by: n My

b

© y=AV/VAT 7/ 'f _
* AV=yVAT \ xaf_'ter heating

\ - " volume =V,
What is the relationship between a and y for a given substance? "

N e
We will start by recalling what y, the volume expansmn coefficient, / Figure .7 23 thee—rlzmenszonal
means and rewriting the expression: || expansion of an object

* y=AV/VAT (<N

Therefore: A {1\ Activity 7.4: Volume
* y=V -V/VAT B ! expansion
Making V, the subject of the equation: \ _ Calculate the increase in

the volume of an aluminium

* V,=yVAT+V, i [ v/ block with a volume of

which, after simplifying, glves PIoM AL N 0.008 m* at 25.00 °C, when
&/ -
* V,=V.(1+YyAT) - this expressron will be of use later it is heated to a temperature
0f 90.00 °C.y, . =6.9 X
We will now write another expression for V,, in terms of o, the 10°5 K-,

linear expansion coefficient. If a cube, oflength [, is heated such
that its temperature increases by AT; each side increases in length,
Al by al AT (see the section on linear expansion).

before heating \ . i ¥ after heating
volume = V=18 IS volume =V, = I3 = (I, + o IcAT)3

| | A

7 '-l~.
fo a lcAT
7
L
I
Y A 7 ol AT
Io ﬁ, =g + aloAT

Ie a lcAT

Figure 7.24 Relating linear expansion

In=lo + o lcAT to volume expansion
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Consequently, the volume of the heated body, is give by V, =,
L, the length of each side of the heated body is related to [:

* I =1+aAT

Consequently,

. —l3—(l+alAT)3—l3(1+aAT)3—l§(1+3aAT+3a2AT2+
3AT5)

* V,=131+3aAT + 3?°AT* + a3AT3)f),_' e

We can further simplify this last form of. _t..he'expression:': V7

[t h/.r

. 13 _ I \/
} "
.o

V.= V(l +30AT + 32AT? + a3AT3) P

As a is a very small number, aZATZ and o*AT° will be very small
compared to 3aAT, and so we will make an approximation and not
include these small terms in the final expresswn In other words,
?’AT?and o’AT° are approx1mately zero, 8\

* V= V(1+3aAT) f

We can now compare thls expresswn with the one we obtained
earlier in terms of P

* V= V(l + yAT)
Now we can see that yAT = 3aAT and therefore y = 3a.

/

.'J'

Remember, that this is also z approx1mat10n Once again we do not
find tables of y values for substances as they are obtained from o
Values usingy = 3a

: IKI ;....j ..IE '
L Fy
! *
g

A,

y, Llnear expansmn Area expansion Volume expansion
Al AA AV
N M = aAT — = 20AT — = 30AT
oA A, V,

Figure 7.25 1D, 2D and 3D expansion summary in terms of «

It often helps to consider a as one-dimensional (1D), f as 2D (so
2a) and y as 3D (so 3a).
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Problems and applications of thermal expansion Think about this...

The thermal expansion of objects can be a problem. Engineers have
to allow for the expansion of concrete and iron on a hot day when
building a bridge by constructing an expansion gap to allow for the
expanding materials. Railway tracks also have expansion gaps and
sections of pipelines in hot countries are linked by flexible pipe,
which can accommodate the expanding pipe.

How could you tell that the
photo of the expansion joint
on a bridge was taken on a
cold day?

bimetallic strip a strip
made of two different metals
bonded together along their
length

An open expansion  Railway line
joint on a bridge

Figure 7.26 Engineers must consider thermal expansion in a range of
contexts.

We can also take advantage of the expansion of materials and put
them to good effect. In hot riveting, a hot steel rivet is used to join
two metal sheets. Whilst still hot, the rivet is hammered to give

a tight joint. As the rivet cools it contracts and makes the joint
between the two metal sheets even tighter.

hot rivet - expanded

|I| A ; “ cold rivet - contracted

NS

metal sheets

Figure 7.27 Hot riveting uses the contraction of metals to make
tighter connections.

The bimetallic strip

A bimetallic strip is made out of two metals, for example iron and

brass bonded together. The coeflicient of linear expansion (a) of Figure 7.28 The Eiffel Tower in
iron (1.1 x 10> K™') is less than that of brass (1.9 x 10 K™'). When  Paris and the Sydney Harbour
the strip is heated, the brass expands more than the iron and the Bridge were constructed using hot
strip bends. riveting.
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brass —» «— iron or invar

this metal
expands less

cool hot

Figure 7.29 The bimetallic strip

KEY WORDS

real expansion the actual
increase in size of a substance

apparent expansion the
observed increase in size of
a substance, which may be
affected by the expansion of
its container

DID YOU KNOW?

The word thermometer
comes from the Greek
“thermo”, which means
warm, and “meter”, to
measure.
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The bimetallic strip is used in a thermostat. This is a switch for an
electric circuit that turns on and off according to the temperature.

brass

Invar

contacts move apart
when bar is too hot

e 207,

Figure 7.30 A bimetallic strip used as part of a thermostat

contacts

When the temperature rises, the brass section of strip expands faster
than the iron and the strip bends so as to break the contact. As the
temperature drops, the strip contracts, the contacts close and the
circuit is restored. We can use this arrangement to switch on and off
heating circuits in buildings and cookers, for example — when the
desired temperature is reached, heating stops and it will not start
again until the temperature has dropped.

Liquid in glass‘thermometers

Mercury in glass and alcohol in glass thermometers use the
expansion of a liquid up a narrow glass tube. The higher the
temperature, the more the mercury or alcohol expands and the
turther the liquids move up the capillary tube. As we have already
seen, the Celsius scale uses two fixed points. We can calibrate a
thermometer for the Celsius scale using the following method.

a) Place the bulb of an ungraduated thermometer in crushed ice -
mark thelevel of the liquid (alcohol or mercury) when it stops
moving. This is the first fixed point.

b) Place the bulb of the ungraduated thermometer in steam from
boiling water. Mark the level of the liquid (alcohol or mercury)
when it stops moving. This is the second fixed point.

c)- Divide the distance between the two fixed points into 100 equal
divisions - the first fixed point is at 0 °C and the second 100 °C.

upper fixed point

centigrade

. centigrade
thermometer

thermometer

-------------- lower fixed point mercury

steam |+— flask
boiling water

Figure 7.31 Calibrating a thermometer
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Expansion of liquids

Liquids require a container and consequently it only really makes
sense to discuss the volume expansion of a liquid. Liquids will tend
to expand more than solids for a given increase in temperature but
volume expansion coefficients can also apply to liquids.

* AV=yVAT SR _.Tgl1am
AV = change in volume. W= Soo
0= =
AT = change in temperature. N =8
. =] =60
V= starting volume. w=§=
=l
y = volume expansion coefficient. / = =
10= | ==
The expansion of liquids is made more complex, however, by the )0 =1=,
need for a container. On warming, the container itself will also -Ci ;l;

expand. If you ask most people to predict what they will see when
the apparatus below is heated, they will suggest that the water level
will rise up the narrow glass tube as it expands.

The water level will indeed rise up the glass tube, but not before it

first drops slightly! As the flask is heated, the glass it is made from Figure 7.32 A thermometer is
expands and so the water level drops until the water itself warms a simple yet very useful piece of
up and expands. The expansion of a vessel holding a liquid means equipment.

the actual or real expansion of the liquid is not actually observed.

Instead, only an apparent expansion of the liquid is observed.

Consequently, the extent to which we see the liquid expand (the

apparent expansion) is less than its actual expansion (real expansion). [V H{FE AR 20 E T 5T
It is possible to allow for the expansion of the vessel in calculations: of a liquid

¢ Yreal:Yapparent * Yvessel Cal.CUlate the increase in

so: the volume of 0.0025 m? of

.y =y -y j mercury at 5.00 °C, when it
spparct  Treal - Tyessel / 3 is heated to a temperature

We will use this relationship to calculate the real and apparent of 55.00 °C. y - 1.8 x

expansion of 1000 cm® of water when it is warmed from 20 °C to 104 K-, ey

80 °C.

Vs = 990 X 10Ky, =2.07 x 107 K1 AT =80°C-20°C=60°C.
* real eXpansion =A Vreal ; narrow glass tube

AV =V,..VAT State relationship to be used

real

AV =207 x 10~* x 0.001 m3®x'60 °C Substitute in known values and
complete calculation

AV =124 x10~ m’ Clearly state the answer with unit

* apparent expansion =AY

apparent

Yapparent = Veeal ™ Yvessat, State relationship to be used

=2.07x10*K!'=9.90 x 10° K™ = 1.97 x 10 K" Substitute

Yapparent
in known values and complete calculation

So:

wparent = Yapparent VAT State relationship to be used Figure 7.33 What will happen to
the liquid if this object is heated?
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AV =1.97 x 10* K x 0.001 m? x 60 °C Substitute in known

apparent

values and complete calculation

AV = 1.18 x 10~ m? Clearly state the answer with unit

apparent

This calculation demonstrates that the real expansion of a liquid is
greater than the apparent expansion.

Expansion of solids, liquids and gases

For a given change in temperature, AT, liquids will tend to expand
significantly more than solids. This difference is clear when we
compare values of coeflicients of volume expansion for solids and
liquids. We can see thaty, ., >y

solid®

Table 7.2 Volume expansion coefficient of solids and liquids

Substance | Volume Substance | Volume expansion

(solid) expansion (liquid) coefficient (y)
coefficient (y) (x10°K™?)
(x10°K?)

aluminium | 6.9 petrol 95.0

copper 5.1 ethanol 75.0

brass 5.7 water 21.0

iron 3.3 mercury 18.0

You will notice that there are no volume expansion coefficients for
gases: This is because the volume of a gas is dictated by a number
of factors. The temperature is certainly one of these, but we also
have to consider the pressure and the amount (number of moles)
of gas present. The relationship between the volume of a gas and its
temperature can be shown using the ideal gas equation:
* pV=nRT

p = pressure of gas in Pa

V = volume of gas in m’

n = number of moles of gas in mol

R = universal gas constant (8.314 J/K/mol)

T = absolute temperature in K

You will notice that there is no constant in the equation relating
to the nature of the gas. The equation applies to all “ideal gases”
and is a good approximation for most gases. If the pressure and
the amount of gas are constant, we notice that the volume is
proportional to the absolute temperature:

* VxT

So, if the absolute temperature of a given quantity of gas is doubled
at constant pressure, the volume doubles!

Gases will consequently tend to expand more for a given
temperature rise than liquids, which in turn expand more than
solids.
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The unusual behaviour of water

In most cases when a liquid is frozen, the solid formed will have a
lower volume than the initial liquid. We can explain this in terms of
kinetic theory.

In a solid, the particles are closer together than they are in a liquid.
Hence, for a given mass of substance, the solid usually has a lower
volume and a higher density than its liquid state. Water though

is an exception. The graph in Figure 7.34 shows that water has a
maximum density at just under 4 °C.

Let’s look at this graph in a little more detail. As the water cools
below 10 °C, the water behaves as expected at first. It increases in
density as its particles lose energy and move closer together. Then,
at just below 4 °C, the density starts to decrease. A drop in density
can only mean that the water molecules are further apart in water at
2 °C than they are at 8 °C. Why is this?

To understand this unusual observation, we need to know more
about the forces acting between water molecules. Water has the
chemical formula H,O; it is composed of two hydrogen atoms and
one oxygen atom. Liquid water has a very high boiling point for
its molecular size because strong intermolecular forces (hydrogen
bonds) form between the oxygen atom in one molecule and a
hydrogen atom in another. To boil water, these strong hydrogen
bonds have to be broken.

Normally in liquid water, each water molecule forms one hydrogen
bond to another water molecule. As the temperature of water drops
towards 4 °C though, the molecules are closer together and each
molecule begins to form a second hydrogen bond with another
water molecule. In order for this second hydrogen bond to form,
the molecules now need to be in very exact relative positions and
the molecules end up moving further apart to allow this second
bond to form. This gives water below 4 °C and ice a more open
molecular structure than warmer water.

Strong stable hydrogen bonds
between H,O molecules at 0 °C,
forming a rigid hexagonal crystal

Loose hydrogen bonds between
continuously moving H;0 molecules

at10°C lattice structure

H,O molecule

®e
.
®e
.

Large gaps between
molecules held rigidly
apart

Grade 9

Lot of open space

Density of Water vs.

Temperature
1000.0
P
% 999.9
o
5 £
=9 999.8 \
23
]
(=} 999.7
999.
0 2 4 6 8 10
Temperature

(C)
Figure7.34 How the density of
water changes with temperature.

hydrogen‘bond

H o+
H o+
\ /
OnmmmnmnmH—O
5— O+ 0-
H
O+

Figure 7.35 A hydrogen bond
between water molecules

Figure 7.36 The molecules are
further apart in frozen water
than in water at 4 °C.
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So, with a more open structure, ice and cold water below 4 °C have a
lower density and a higher volume than warmer water. This explains
why ice will float on water. The expansion of water on freezing can
cause other problems though. When it gets cold, water in pipes can
freeze, expand and then break the pipe!

In this section you have learnt that:

The thermal expansion of solids can be explained in terms
of the increasing distance between particles that occurs on
warming.

The expression for the linear expansion of solids is Al =
al AT - we can use this to find by how much the length of a
sample expands.

The expression for the surface area expansion of solids is AA
= BAAT - we can use this to find by how much the surface
area of a sample expands.

The expression for the volume expansion of solids is AV =
yVAT - we can use this to find by how much the volume of a
sample expands.

The relationship between the coefficient of linear (o), area
(B) and volume (y) expansion is as follows: § = 2a, y = 3a.

The applications of thermal expansion include the bimetallic
strip in thermostats, hot riveting and thermometers.

The real expansion of a liquid is less than the apparent
expansion as the vessel holding the liquid also expands.

The abnormal expansion of water can be explained in terms
of its more open molecular structure below 4 °C.

Gases expand more than both solids and liquids for a given
rise in temperature.

Review questions

i
2.

Explain why solids expand on heating.

Calculate the increase in length of a 2 m brass rod that is heated
from0°Ct0150°C.a_ =1.9x 10° K™

Calculate the surface area of an iron drain cover with a surface
area of 0.67 m? at 10 °C, when it is heated to a temperature of
105°C. B, =22x10° K™

Show that, for a given material, the surface expansion coefficient
(P) is about twice the linear expansion coefficient (a).

Calculate the increase in the volume of a 0.1 m’ sample of water
at 10.00 °C, when it is heated to a temperature of 80.00 °C. y
=2.1x10"* K™

water
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6. Explain what is meant by the apparent thermal expansion
of aliquid and compare its magnitude with the real thermal
expansion of the same liquid under the same conditions.

7. Explain why water expands on freezing.

7.3 Quantity of heat, specific heat capacity and
heat capacity

By the end of this section you should be able to:
o Identify different units of heat energy.
¢ Define the terms specific heat capacity and heat capacity.

e Describe the factors that affect the amount of heat
absorbed or liberated by a body.

¢ (alculate the amount of heat energy absorbed or liberated
by a body using Q = mcAT.

¢ (alculate the heat capacity of a body.
e Describe the uses of a calorimeter.

e Explain the significance of the high specific heat capacity
of water.

® Use the relationship heat lost = heat gained to solve
problems involving heat exchange.

What are the units of energy? DID YOU KNOW?
As discussed in Unit 4, the scientific unit of energy is the joule (J). The British Thermal
You may see another unit of energy called the calorie (cal). Unit is still used in some

applications today. It is the
quantity of energy needed
to raise the temperature of 1
Ib of water by 1 °F, which is
about 1060 J.

One calorie is the quantity of heat energy required to increase the
temperature of 1 g of water by 1 °C. The amount of energy in joules
required to increase the temperature of 1 g of water by 1 °Cis 4.18]
and so:

* lcal=4.2]

The calorie is less frequently used now but you will see later that its
definition is connected to the work we do later in this section.

What is meant by the term specific heat capacity?

If we were heating a substance to raise its temperature, the amount
of heat energy required would depend on three things:

1. The substance being heated. A given mass of aluminium will
require more energy to raise its temperature by 1 K than the
same mass of wood.

2. The mass of the substance. The greater the mass of the substance,
the more heat energy will be required to raise its temperature.
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Worked example

Calculate the quantity of heat energy
required to heat a 1.00 kg block

of iron from 290 K to 320 K. The
specific heat capacity of iron is 470
J/kg K.

Q = mcAT State principle or equation
to be used (from definition of specific
heat capacity)

In this case, m = 1.00 kg, c = 470 3/
kg K, AT = (320 K - 290 K) = 30 K

Q=1.00 kg x 470 J/kg K x 30 K
Substitute in known values and
complete calculation

Q=14 100 J = 14.1 kI Clearly state
the answer with unit

So, 14.1 kJ of heat energy would be
required to increase the temperature
of a 1.00 kg iron block by 30 K.
Equally, if the 1.00 kg iron block
cooled by 30 K, the iron block would
have to lose 14.1 kJ of heat energy
to the surroundings.

Worked example

Calculate the quantity of heat energy
lost from a 580 g sample of water

if it cools from 333 K to 278 K. The
specific heat capacity of water is
4200 J/kg K.

Q = mcAT State principle or equation
to be used (from definition of specific
heat capacity)

In this case, m = 0.58 kg, ¢ = 4200 J/
kg K, AT = (333 K - 278 K) = 55 K

Q =0.58 kg x 4200 J/kg K x 55 K
Substitute in known values and
complete calculation

Q=13398J =134 kJ Clearly state
the answer with unit

So, as the 580 g sample of water
cools from 333 K to 290 K, it would
lose 134 kJ of heat energy to its
surroundings.
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3. The temperature rise required. For a given mass of a
particular substance, a large temperature increase will
require a larger amount of heat energy than a small
increase in temperature.

Each substance has a specific heat capacity (c), which is
defined as:

* Theheat energy required to raise the temperature of
1 kg of a given substance by 1 K.

The units of specific heat capacityare J/kg K and Table
7.3 shows the specific heat capacities of some materials.
We can see that metals tend to have lower specific heat
capacities than non-metals and that water has a notably
high value.

Table 7.3 Some different specific heat capacities

Substance | Specific heat capacity (3/kg K)
iron 470

copper 420

brass 380

aluminium | 910

water 4200

rubber 1700

glass 670

From the definition of specific heat capacity, the quantity
heat energy required (Q) to increase the temperature of a
substance is found using the equation below:

* c=Q/mAT

This is usually written as:

* Q=mcAT

m = mass of substance (kg)

¢ = specific capacity of substance (J/kg K)

AT = change in temperature (K). Remember, a change
in temperature of 1 °C is the same as a change in
temperature of 1 K. So, in this case °C or K may be used.

Calculate the specific heat capacity of a 2.0 kg
block of a solid that requires 63 700 J to raise its
temperature by 35 K.

A solid has a specific heat capacity of 800 J/kg K.
How much heat energy would be released a 250 g

sample of this solid if its temperature falls from
310 K to 260 K?
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How can we find the specific heat capacity of a
substance?

There are several methods we can use to determine the specific heat
capacity of a substance, but remember that to calculate this value we
will always need to know the mass of the substance, the amount of
heat energy supplied to it as well as its starting temperature and
final temperature. All of these slightly different approaches involve
heat exchange. The heat from a hot body is used to warm a colder
body. In approaching these heat exchange calculations we use the
principle that the heat energy lost from the hot body will equal the
heat gained by the cold body.

* Heat energy lost by hotter body = heat energy gained by colder
body

Sometimes, we try to prevent heat loss to the surroundings using
insulation. The experimental approach of measuring heat capacities
and the heat changes during chemical and physical processes is
called calorimetry.

Electrical heating

This method can be used to find the specific heat capacity of a solid
or aliquid. The diagram in Figure 7.37 shows the apparatus used to
find the specific heat capacity of a solid. In this case, the hot body
losing the heat energy is the electrical heater.

<e———— thermometer

electrical heater of
known power ——

- Figure 7.37 Finding the
specific heat capacity of
a known mass

insulation

—a—+— solid sample of
known mass

If we know the power rating of the heater and we know how long
the heater is switched on for we can determine the quantity of heat
energy supplied to the block. For example, a 100 W electrical heater
supplies 100 J of heat.energy every second.

We will use the following experimental data to calculate the specific
heat capacity of aluminium using this apparatus.

A 100 W electrical heater, running for 5 minutes, warmed a 0.50 kg
block. The start temperature of the aluminium block was 20 °C and
its final temperature was 85 °C.

Energy supplied = power x time State principle or equation to be used
(from the definition of power)

E = P x t Express in the standard symbols

E =100 W x (5 minutes x 60) = 100 W x 300 s Substitute in known
values and complete calculation

Grade 9

Worked example

A 300 g block of brass at
298 K is supplied with

1026 J of energy from an
electrical heater. Calculate
the final temperature of

the brass block after this
heating, assuming that there
has been no heat loss. The
specific heat capacity of
brass = 380 J/kg K.

Q = mcAT State principle or
equation to be used (from
definition of specific heat
capacity)

AT =Q/ mc Rearrange
equation to make AT the
subject

In this case, m = 0.30 kg,
c=380J/kg K, Q= 1026 J.

AT =1026 J /(0.30 kg x 380
J/kg K) Substitute in
known values and complete
calculation

o AT =9 K Clearly state the
answer with unit

So, we have found that
AT =9 K. As the brass
block has been heated, the
temperature would have
increased and so the final
temperature =298 K + 9 K =
307 K or 34 °C. Ensure the
final temperature is
calculated, not just AT

DID YOU KNOW?

Even on his honeymoon in
the Swiss Alps, James Joule
did not stop work. He tried
to show that when water
falls through 778 feet, its
temperature rises by 1 °F but
all the spray got in the way!
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KEY WORDS

calorimetry the experimental
approach to measuring heat
capacities and heat changes
during chemical and physical
processes

final temperature the
temperature of a substance
after heating

insulation material which
does not conduct heat energy
and hence can prevent heat
loss

starting temperature the
temperature of a substance
before heating

Thermometer
e Stirrer
) — | ]
Heater
Water ————— =
Insulated
base
Calorimeter

Figure 7.38 Determining the
specific heat capacity of a liquid

DID YOU KNOW?

<« . o)

calorimeter” comes from
the Latin calor, which
means heat.
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E=30000] Clearly state the answer with unit
Assuming all this energy goes into heating the block
Q=30000]

Q =mcAT State principle or equation to be used (from definition of
specific heat capacity)

c=Q/mAT Rearrange equation to make c the subject

In this case, m = 0.50 kg, AT = (85°C-20°C=65°C) = 65K, Q =
30000 J.

c¢=30000]J/(0.50 kg x 65K) Substitute inknown yalues and complete
calculation

¢ =923 ]/kg K Clearly state the answer with unit

We have ignored any heat energy supplied to the thermometer and
any heat lost to the surroundings, and assumed that the electrical
heater is 100% efficient in this calculation,

Electrical heating can also be used to determine the specific heat
capacity of a liquid: An'insulated container could be used for the
liquid and the data obtained will be the same as for the example
above. Alternatively, a calorimeter could be used to hold the liquid.
A calorimeter is a polished metal can. In this case, the liquid is
continuously stirred and we will take into account the heat energy
supplied to the calorimeter as well as that supplied to the liquid. The
diagram in Figure 7.38 shows the use of a calorimeter to determine
the specific heat capacity of water.

We will use some experimental data from this method to calculate
the specific heat capacity of water. The important factor to
remember here is that some of the heat energy supplied by the
heater will warm the calorimeter and stirrer as well as the water.

The electrical heater has a power rating of 200 W. It caused the
water to increase in temperature from 25 °C to 74 °C after running
for 5 minutes.

Mass of water =200 g
Mass of aluminium calorimeter and stirrer = 400 g
Specific heat capacity of aluminium = 910 J/kg K

Heat energy supplied = heat energy + heat energy received
by heater (Q,) received by by aluminium
water (Q,) calorimeter (Q)

The water and the stirrer will be in thermal equilibrium and so the
temperature change for both will be the same (i.e. AT =74 °C - 25
°C =49 °C = 49 K).

Heat supplied by heater (Q,):

E = P x t State principle or equation to be used (from the definition of
power)

E =200 W x (5 minutes x 60) = 200 W x 300 s Substitute in known
values and complete calculation

Grade 9
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E=60000] Clearly state the answer with unit
Q, = 60000 ]
Heat energy received by calorimeter and stirrer (Q ):

Q_=mcAT State principle or equation to be used (from definition of
specific heat capacity)

Q. =0.40 kg x 910 J/kg K x 49K Substitute in known values and
complete calculation

Q_=17836] Clearly state the answer with unit

Heat energy received by water (Q, ):

Q,= Q, + Q. Express the relationships between the energies.
60000 ] =Q_+17836] Substitute in known values

Q,=60000] -17836] Rearrange to make Q  the subject complete
calculation

Q,=42164] Clearly state the answer with unit
Specific heat capacity of water:

Q,, = mcAT State principle or equation to be used (from definition of
specific heat capacity)

c=Q /mAT Rearrange equation to make c the subject
In this case, m = 0.20 kg, AT =49 °C, Q =42 164 ].

c=42164]/(0.20 kg x 49 °C) Substitute in known values and
complete calculation

¢ =4302 J/kg K Clearly state the answer with unit

Once again, this is an experimental value — one major source of
error will be heat loss to the surroundings, despite the precautions
taken.

Method of mixtures

This method can be adapted to measure the specific heat capacity of

a solid or liquid.

The diagram in Figure 7.39 on the next page shows the method
used to determine the specific heat capacity of a solid. The solid,

of known mass, m, is heated in a water bath at 100 °C for at least 5

minutes. The solid is then quickly transferred to the cold water of
known mass, m , in the calorimeter.

We know that the start temperature of the solid object is

100 °C. Once in the calorimeter, the hot object (in this case a steel
bolt) loses some heat energy to the colder water, and the colder
calorimeter and stirrer. We stir the water and record the highest
temperature on the thermometer.

Grade 9

A copper calorimeter

and stirrer of mass 350 g
contains 250 g of a liquid.
A 500 W heater running for
2 minutes and 30 seconds
heated this combination of
liquid and calorimeter from
20 °C to 88 °C. Calculate
the specific heat capacity
of this liquid given that the
specific heat capacity of
copper is 420 J/kg K.
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cotton thermometer.

thread A / \m
stirrer
cover
cotton
thread
beaker \
AN ’
water outer
— .J\\ /jacket
steel $ \/s
bolt - | ) ,
e calorimeter\:é “,; lagging
tripod % ? material
stand N 7]
D
Qg; Y 3;
HEAT steel — | = | i
\C = g
bolt ST e o W/

Figure 7.39 Determining the specific heat capacity of a bolt using the
method of mixtures

In this case, the heat lost by the hot bolt will be equal to the heat
gained by the water and the calorimeter/stirrer.

Mass of water = 200 g.

Specific heat capacity of water = 4200 J/kg K.

Mass of copper ‘calorimeter and copper stirrer = 100 g.
Specific heat capacity of copper = 420 J/kg K.

Start temperature of water + calorimeter = 20 °C.
Highest temperature of water after addition of the steel bolt = 25 °C.
Mass of steel bolt = 125g.

Temperature of steel bolt before cooling = 100 °C.
Heat lost by bolt = heat received by water + heat received by

calorimeter/stirrer
Q, Q, Q
Heat received by water Q  :
* Q, =mcAT
m = 0.200 kg

¢ =4200J/kg K
AT=25°C-20°C=5°C=5K

©Q, =4200]
Heat received by calorimeter/stirrer Q :
* Q=mcAT
m = 0.100 kg
c=420]J/kg K
AT=25°C-20°C=5°C=5K
© Q. =210]
Heat lost by bolt Q;:
£ Q,=Q,+Q

* Q,=4200]+210]=4410]
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Specific heat capacity of steel bolt c;:

At the end of the experiment, the bolt, water and the calorimeter
and stirrer will be in thermal equilibrium and all be at the same
temperature = 25 °C

AT = start temperature of bolt - final temperature of bolt = 100 °C
-25°C=75°C=75K

* Q,=mxc, xAT

* ¢,=Q,/mAT

* ¢,=4410]/(0.125kg x 75K)
* ¢,=470]/kgK

This method can be adapted to find the specific heat capacity of a
liquid by adding a hot solid of known specific heat capacity to the
liquid sample or even by pouring a hot liquid into a cooler one:

What is the heat capacity of a body?

We have seen lots of examples of specific heat capacity. The word heat capacity the energy
specific here tells us that this is the heat energy required to increase required to raise the

the temperature of 1 kg of a substance by 1 K. In other words, thisis | temperature of a body by 1 K
specific to I kg of the substance.

The heat capacity of a body is the defined as the energy required to
raise the temperature of the given body by 1 K; the mass of the body
is not considered, only the energy required to raise its temperature
by 1 K.

* heat capacity = Q/ AT

Let us look again at the calculation to determine the specific heat
capacity of the steel bolt.

The experimental data shows us that the steel bolt lost 4410 J and
its temperature fell by 75 K, or, to-increase its temperature by 75 K,
4410 J of heat energy would be required.

So, if 4410 ] of energy causes a 75 K rise, the heat capacity would be:
* heat capacity = Q/ AT

* heat capacity =4410 ]/ 75 K

* heat capacity = 58.8 J/K.

Note that the units do not include a mass term.

The specific heat capacity of steel is 470 J/kg K and if the heat
capacity of a body is known, the specific heat capacity of the
material of which it is made can be found provided the mass of the
body is known.

* Specific heat capacity = heat capacity of body / mass of body

Let’s try this with the steel bolt used in the last specific heat capacity
experiment.

So, for the steel bolt of mass 0.125 kg:
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Activity 7.8: Heat
capacity of a ball

A plastic ball experiences

a temperature rise of 10 K
when 600 J of heat energy
are supplied to it. Calculate
the heat capacity of the
ball. What else would you
need to know in order to
calculate the specific heat
capacity of the ball?

Figure 7.40 Water’s high specific
heat capacity makes it useful for
cooling systems.
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* specific heat capacity = heat capacity of body / mass of body
* specific heat capacity = 58.8 J/K / 0.125 kg

* specific heat capacity = 470 J/kg K

We will now try another example:

A solid block requires 3000 ] of heat energy to increase its
temperature by 60 K. Calculate the block’s heat capacity and use this
value to calculate its specific heat capacity if the block has a mass‘of
50 g. :

* heat capacity = Q/ AT

* heat capacity =3000J / 60 K

* heat capacity = 50 J/K

* specific heat capacity = heat capacity of body / mass of body
* specific heat capacity = 50 J/K / 0.05 kg

* specific heat capacity = 1000 J/kg K-

Why is the high specific heat capacity of water so
important?

If you look back at the table of specific heat capacities of different
substances; you will see that water has an especially high value. We
should think about this furtherand see if it is important.

If a substance has a high specific heat capacity, it means that a
large amount of heat energy is required to bring about a rise

in temperature of 1 kg water by 1K. This is important when we
remember that water is widely used in industry and in internal
combustion engines for cooling.

It a liquid with a low specific heat capacity was used for cooling
purposes, a given mass of this liquid would receive very little heat
energy before its temperature increased to its boiling point, at which
stage it would no longer act as a coolant.

So, the fact that a given mass of water will receive a large amount of
heat energy compared to other liquids before it boils makes it very
useful for cooling.

The reverse is also true. A large mass of hot water contains a very
large amount of energy. This can then be pumped around the house
and as the water cools is transfers this heat energy to rooms inside
the house.

In this section you have learnt that:

¢ The specific heat capacity of a substance is the heat
energy required to raise the temperature of 1 kg of a given
substance by 1 K.
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® The heat capacity of a body is the heat energy required to
raise the temperature of the body by 1 K.

¢ The factors that affect the amount of heat absorbed or
liberated by a body are the temperature change, the mass of
the body and the material making up the body.

¢ The amount of heat energy absorbed or liberated by a body
can be calculated using Q = mcAT.

® The high specific heat capacity of water is significant as
water is used for cooling.

e A calorimeter is used in specific heat capacity and heat
capacity experiments.

Review questions

1. Define the term “specific heat capacity of water”.

2. A metal bar of mass 100 g is warmed from 20 °C to 80 °C. How
much heat is absorbed by the metal bar if the specific heat
capacity of this metal is 450 J/kg K.

3. Inan experiment to calculate the specific heat capacity of a
metal, the following results were obtained:

Mass of metal = 300 g.

Start temperature = 20 °C.

End temperature = 75 °C.

Power rating of electrical heater = 100 W.

Time of heating = 150 s.

Use this data to calculate the specific heat capacity of the metal.

4. A hot metal block is placed into 50 g of water in an insulated
container. The water increases in temperature from 20 °C to
32 °C. The specific heat capacity of water is 4200 J/kg K.
Calculate the quantity of heat energy supplied to the water from
the metal block.

7.4 Changes of state

By the end of this section you should be able to:

e Define the terms latent heat, latent heat of fusion and
latent heat of vaporisation.

e Solve problems involving change of state.
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Figure 7.41 No matter how long
you heat it the temperature of
boiling water will not go over
100 °C.

DID YOU KNOW?

The term phase is
sometimes used instead
of state — i.e. at room
temperature and pressure
water is in a liquid phase.

KEY WORDS

cooling curve a graph
showing the temperature of a
substance against time as it
loses heat energy and changes
state

heating curve a graph
showing the temperature of
a substance against time as
heat energy is applied and it
changes state

melted when a substance
has changed from a solid to a
liquid state

phase the distinct form of
a substance under different
conditions e.g. solid, liquid,
gas

Heating and cooling curves

If we heat a solid, its particles gain energy and begin to vibrate faster
and move further apart as its temperature increases. This continues
until the solid melts. Even though the solid is continuously heated
as it melts, its temperature will not increase until the entire solid has
melted.

If the heat energy the substance gains is not used to increase the . -
average kinetic energy of its particles (the temperature does not
change) what is it being used for? We can see that the same effect
occurs when a liquid boils. As the liquid is being heated at its
boiling point, the temperature does not increase until all of the
liquid has boiled. :

The graph in Figure 7.42 shows how the temperature of a solid (A)
varies with time as it is heated until melts (B) and finally forms a
liquid (C). This is called a heating curve. The liquid is heated until
it boils (D) until all of the liquid changes state into a gas (E), which
continues to increase in temperature as it is heated.

E gas
boiling point : _th
iquid to gas
Temperature/K C liquid
solid to liquid /
melting point B
A'solid
Time

Figure 7.42 This graph shows how the temperature of water changes
as it is continuously heated.

We cannot link the heat energy being absorbed during melting
and boiling with an increase in temperature and so the heat energy
appears to be hidden or latent.

If latent heat is not being used to increase the kinetic energy of the
particles of a substance, what is it being used for? During a change
in state, the forces of attraction holding the particles together have
to be broken. This process requires energy and so, as a solid melts
or a liquid boils, the heat supplied is used to separate the particles
rather than to increase their kinetic energy. Consequently, the
temperature of the substance does not change during a change in
state. This is true for melting, boiling as well as condensing and
freezing.

A similar shape is seen when the cooling curve of a substance

is examined (Figure 7.43). When changes of state occur, the
temperature remains constant as only potential energy is being lost
as forces of attraction act between the particles again.
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gas

E gas to liquid

boiling point
D

liquid
Temperature C

liquid to solid

melting point

B solid
A

Time

Figure 7.43 A cooling curve for a gas cooling to eventually become a
solid.

Definition of specific latent heat
The specific latent heat (L) of a substance is defined as:

* The quantity of heat energy required to change 1 kg of a
substance from one state to another, at constant temperature.

Specific latent heat has the units of J/kg. Notice again that we use
the term ‘specific’ as this quantity is ‘specific’ for 1 kg of a substance.

In terms of an equation we have:
* L=Q/m
L = specific latent heat in J/kg
Q = energy required in ]
m = mass in kg
This is usually written as:
* Q=mL

However, there are two changes of state'to consider; liquid to gas
and solid to liquid. We use two different versions of latent heat, the
latent heat of fusion (melting) and latent heat of vaporisation
(boiling).

Specific latent heat of fusion (L)

This is the quantity of heat energy required to change 1 kg of a
substance from a solid to a liquid at constant temperature.

Specific latent heat of vaporisation (L)

This is the quantity of heat energy required to change 1 kg of a
substance from a liquid to a gas at constant temperature.

Table 7.4 shows the values of the specific latent heat of fusion
and specific latent heat of vaporisation for some elements and
compounds.

Grade 9

Draw the shape of a cooling
curve, starting at 90 °C,

for a substance that has a
boiling point of 83 °C and a
melting point of

40 °C. Continue the cooling
curve until the temperature
reaches 25 °C.

KEY WORDS

state the distinct form of
a substance under different
conditions e.g. solid, liquid,
gas

latent heat of fusion the
amount of heat energy
required to change the
state of a substance from a
solid to a liquid at constant
temperature

latent heat of vaporisation
the amount of heat energy
required to change the

state of a substance from a
liquid to a gas at constant
temperature
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Worked example

1. Calculate the heat energy required

to melt 1 kg of copper at its
melting point.

Heat change absorbed on melting:

Q =m x L, State principle or
equation to be used (from
definition of specific latent heat)

Q=1 kg x 209 000 J/kg
Substitute in known values and
complete calculation

Q =209 000 J =209 kJ

Clearly state the answer with unit

. Calculate the mass of water that
changes state if the water is at
its boiling point and 500 kJ of
energy is supplied.

Q =m x L State principle or
equation to be used (from
definition of specific latent heat)

m=Q/ LV Rearrange equation to
make m the subject

m =500 000 J / 2 500 000 J/kg
Substitute in known values and
complete calculation

m = 0.2 kg Clearly state the answer
with unit

. Calculate the heat energy
liberated when 0.025 kg of
aluminium freezes at its freezing
point.

Heat change given out on
freezing:

Q = m x L, State principle or
equation to be used (from
definition of specific latent heat)

Q =0.025 kg x 390 000 J/kg
Substitute in known values and
complete calculation

Q=9750 3 =9.75 kJ Clearly state
the answer with unit

In this case, this is the energy
given out to the surroundings as
the aluminium freezes.

Table 7.4 Some specific latent heats of fusion and vaporisation

Substance | Specific latent | Specific latent
heat of fusion, | heat of vaporisation,
L, (3/kg) L, (3/kg)

aluminium | 390 000 10 900 000

copper 209 000 4 730 000

gold 63 700 1 645 000

iron 245 000 6 080 000

water 334 000 2 500 000

Looking carefully at Table 7.4 we can see that the specific
latent heat of vaporisation is always much higher than the
specific latent heat of fusion. This' means it takes a great
deal more energy to turn a liquid to a gas than it does to
turn a solid into a liquid. This is because when a substance
changes from a liquid to a gas'the bonds between all the
molecules have to be broken apart, whereas the particles in
a liquid remain bonded together.

The melting point of aluminium is 660 °C. So, at 660 °C,

1 kg'of solid aluminium would require 390 000 J of heat
energy to change its state into a liquid. This also means
that 390 000 J of heat energy would be given out if 1 kg of
liquid aluminium at 660 °C changed state into a solid.

Now we will work through some example calculations,
using the specific latent heat data in Table 7.4.

Calculate the heat energy required to boil 100 g
of aluminium at its boiling point. L, (aluminium
=10 900 000 J/kg).

Calculate the heat energy liberated when 2 kg of
water turns to a solid at its melting point. L, (water)
= 334 000 J /kg.

Now that we can use specific heat capacities and specific
latent heats, we can calculate the heat energy required
when substances are heated, taking into account changes in
state.

* Total energy required = energy required to increase
temperature + energy required to change state

* Q, ,=mcAT +mL

For example, we will now calculate the heat energy
required to increase the temperature of 50 g of water from
25°Cto 125 °C.

Specific heat capacity of water = 4200 J/kg K.
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Specific heat capacity of steam = 2080 J/kg K.
Specific latent heat of vaporisation of water = 2 501 000 J/kg.

We will need to calculate the heat energy required for this change in
three stages:

1. Heat energy required to heat 50 g of water from 25 °C to 100 °C
(AT =75 °C = 75 K):

* Q=mcAT
* Q=0.05kg x 4200 J/kg K x 75 K
* Q =15750]
2. Heat energy required to boil 50 g of water at 100 °C: | £ theR(ometer
* Q=mL, \
* Q=10.05kg x 2501000 J/kg
* Q,=125050] ) i/copper
3. Heat energy required to heat 50 g of steam from 100 °C t0,125 °C calorimeter
(AT = 25 °C = 25 K):
o Q=mcAT water
* Q=0.05kgx2080]/kg Kx25K
© Q=2600].

So, the total amount of heat energy required for this process:
* Q=Q+Q,+Q,

* Q=15750J+125050] +2600]

* Q=143400]=143.4K]

Experiment to determine the specific latent heat of @
fusion of ice

The apparatus in Figure 7.44 can be-used to determine the specific \
latent heat of fusion, L, of ice.

stirer — |
The copper calorimeter and stirrer is weighed before being half ) (

filled with water. The mass of the water present in the calorimeter
is then determined before the water is heated to at least 10 °C ice——~
above room temperature. Small quantities of ice are then added

to the water, while stirring, until the temperature is below room Q
temperature and all the ice has melted. The mass of the calorimeter,

stirrer and water is then determined to find out the mass of ice _
added.

We will use the experimental data obtained using this method to
determine the specificlatent heat of fusion of ice.

Mass of calorimeter = 0.15 kg.

Mass of water = 2.00 kg.

Mass of ice added = 0:60 kg.

Start temperature of ice = =10 °C.

Start temperature of water = 49 °C.

Final temperature of water = 20 °C.

Specific heat capacity of water = 4200 J/kg K.

(o)

Figure 7.44 A simple experiment
to determine the specific latent
heat of fusion of ice.
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Specific heat capacity of ice = 2100 J/kg K.
Specific heat capacity of copper = 420 J/kg K.

We will use the principle here that the heat energy lost from the
water and the calorimeter will go to warming and melting the ice
and then warming the cold water produced when the ice melts.

Heat energy absorbed by ice = Heat energy liberated from
and cold water calorimeter/stirrer and water and
water

1. Heat energy lost by calorimeter/stirrer and water:
* AT=49°C-20°C=29°C=29K
Heat energy lost by calorimeter:

Qlost calorimeter mcalorimeterccalorimeter

* Qlostcalorimeter =0.15 kg X 420 ]/kg K x 29K =1827 I
Heat energy lost by water:

* QlOSt water = mwatercwater

* Qlostwater =2.00 kg % 4200 ]/kg K x 29 K =243 600 ]

Total heat energy lost by calorimeter/stirrer and water = 243 600
+ 1827 =245 427 ].

2. Heat energy absorbed by ice and water in warming from -10
°Ct020°C:

Heat energy require to warm ice from -10 °Cto 0 °C (AT =0°C
- -10°C=10°C =10K).

'Y —
Qice (-10-0) miceciceAT

= 0.60 kg x 2100 J/kg K x 10 K = 12 600 ]

Qice (-10-0)
Heat energy required to melt 0.60 kg of ice:

* Qmelt ice in mLf

* Q= 0.60 kg x Lf

Heat energy require to warm cold water from 0 °C to 20 °C (AT
=20°C-0°C=20°C=20K).

=m_c AT

Qwater (0-20) ice  water

= 0.60 kg x 4200 J/kg K x 20 K = 50 400 ]

Qwater (0-20)

Heat energy absorbed by ice = Heat energy liberated from
and cold water calorimeter/stirrer and water

12600 J + 0.6Lf+ 50400 J = 245427 )

* 0.6L,=182427]
© L=182427]/06
* L,=304045]/kg = 304 kJ/kg
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Summary

In this section you have learnt that:

e The terms specific latent heat of fusion and specific latent

heat of vaporisation relate to the energy required to melt
and vaporise 1 kg of a substance at constant temperature.

e Tt is possible to calculate the energy (Q) required or

liberated on a change of state for a given mass, m, of a
substance using the equation Q =mL or @ = mL,.

o

»

oo

Review questions
L.

Calculate the heat energy required to melt 10 g of copper at its |
melting point.

(Lffor copper = 209 000 J/kg).

Calculate the heat energy required to melt 1.2 kg of gold at'its
melting point.

(L, for gold = 63 700 J/kg).

Calculate the heat energy liberated when 75 g of iron freezes at
its freezing point. ' :

(Lffor iron = 245 000 J/kg).
Define the term specific latent heat of fusion of magnesium.

Calculate the heat energy required to increase the temperature
of 0.1 kg of water from 10 °C to 150 °C.

Specific heat capacity of water = 4200 J/kg K.
Specific heat capacity of steam = 2080 J/kg K.
Specific latent heat of vaporisation of water = 2 500 000 J/kg.

End of unit questions

1.

o

»

-

Write a paragraph explaining the difference between the heat
energy in a substance and the substances’ temperature.

Explain, with reference to the appropriate laws of
thermodynamics and particle movement, what happens when a
cold object is in thermal contact with hot object.

Calculate the increase in length of an iron pipeline that is
30.00 mlong at 20 °C when it is warmed to 45 °C. o = 1.1 x
10 K.

Calculate the increase in volume of ethanol that has a volume
of 2.5 x 10 m* at 25 °C when it is warmed to 45 °C. Explain
why the apparent expansion will be less than this calculated real
expansion. y =75x107 K™

ethanol
In an experiment to calculate the specific heat capacity of
a metal, the following data were obtained. Use the data to
calculate the specific heat capacity of the metal.
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10.

Mass of metal = 200 g.

Start temperature = 20 °C.

End temperature = 105 °C.

Heat energy supplied by electrical heating = 2000 J.

A metal block increases in temperature from 15 °C to 60 °C
when supplied with 13 500 J of heat energy.

a) Calculate the heat capacity of the metal.

b) Calculate the specific heat capacity of the metal, if this
sample has a mass of 0.75 kg.

20 g of water at 42 °C was placed in a well-insulated copper
calorimeter with a mass of 27 g at a temperature of 20 °C. Use
the specific heat capacities of water (4200 J/kg K) and copper
(420 J/kg K) to determine the final temperature of the water.

Calculate the heat energy required to'increase the temperature
of 10.0 kg of water from 25 °C to 115 °C.

Specific heat capacity of water =4200 J/kg K.
Specific heat capacity of steam = 2080 J/kg K.
Specific latent heat of vaporisation of water = 2 500 000 J/kg.

Sketch a cooling curve for bromine as bromine vapour is cooled
from 100°°C to -20 °C. Bromine has a melting point = -7 °C
and a boiling point of 59 °C. Mark clearly on your graph the
melting and boiling point.

In an’experiment to determine the latent heat of fusion of ice,
0.5 kg of ice at -5 °C was placed into 1.5 kg of water in a copper
calorimeter of mass (including stirrer) of 0.2 kg with both water
and calorimeter at 61 °C. The final temperature, when all the ice
had melted, was 25.0 °C. Use the data to calculate the latent heat
of fusion of ice.

Mass of calorimeter = 0.20 kg.

Mass of water = 1.50 kg.

Mass of ice added = 0.50 kg.

Start temperature of ice = -5.0 °C.

Start temperature of water = 61 °C.

Final temperature of water = 25.0 °C.
Specific heat capacity of water = 4200 J/kg K.
Specific heat capacity of ice = 2100 J/kg K.
Specific heat capacity of copper = 420 J/kg K.
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Wave motion and sound m

Section Learning competencies

8.1 Wave propagation | ® Define the terms wave and wave pulse.
(page 207) e Describe longitudinal and transverse waves.
e Define the terms compression and rarefaction.

8.2 Mechanical waves | ® Define and identify the following features of a wave: crest, trough,
(page 214) wavelength, frequency, amplitude and time period.

e Distinguish between mechanical waves and electromagnetic waves.

e Identify transverse and longitudinal waves in a mechanical media.

8.3 Properties of waves | ® State the wave equation and use it to solve problems.
(page 221) e Describe the characteristic properties of waves, including
reflection, refraction, diffraction and interference.
¢ Define the terms diffraction and interference.

8.4 Sound waves e Identify sound waves as longitudinal mechanical waves and
(page 228) describe how they are produced and how they propagate.

e (Compare the speed of sound in different materials and determine
the speed of sound in air at a given temperature.

o Define the intensity of a sound wave and solve problems using the
intensity formula.

® Explain the meaning of the terms echo, reverberation, pitch,
loudness and quality.

e Explain the reflection and refraction of sound and describe some
applications.

Water waves are a common sight; either on the sea, in rivers or
even in the bath. But have you ever really thought about what the
term wave means? Maybe words like ripples, vibrations and energy
spring to mind.

Waves enable us to see and to hear, and can even be used to monitor
the health of unborn babies. Waves have a dangerous side too. The
devastating tsunami'on 26 December 2004 demonstrated some of
the power of waves.

This unit looks at the different types of waves, their characteristics
and behaviour and some of their uses.

8.1 Wave propagation

By the end of this section you should be able to:
e Define the terms wave and wave pulse.
e Describe longitudinal and transverse waves.

e Define the terms compression and rarefaction.
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UNIT 8: Wave motion and sound

Figure 8.1 Waves are a common
sight on water.

Figure 8.2 Rays of light travel out
as waves from a light bulb.

Energy transfer

B

Figure 8.3 Waves transfer energy
from A toB. |

", Direction of wave

i

Figure 8.4 A duck floating on the
water just moves up and down as
the waves go past.

- waves?

Waves can be thought of as a series of vibrations that travel
through a medium (a medium is another way of describing the
material through which the wave is travelling).

All waves transfer energy from one place to another. Light waves
travelling out from a light bulb transfer energy from the bulb to
your eye. Sound waves transfer energy from a speaker to your ear,

Although waves transfer energy from one place to another there is
no transfer of matter. The material the wave is travelling through
does not move along with the wave. In other words, when waves
travel through water the water does not travel along with the wave.

This can be seen by observing a.'ducl.( (or any object that floats)
sitting on the water. As the wave moves past the duck it just bobs up
and down. It does not travel along with the wave.

Unless it is a gas, the partlcles inside any medmm are pretty much
stationary. They move around a little and are always vibrating a little
but essentially they remain in their equilibrium positions. When

a wave passes through the material the particles in the medium

simply vibrate from side to side.
This vibration co_uld be up and down, left to right or any variation,
but the particles always move back and forth past their equilibrium

position.

/

Particle in the medium

-

Figure 8.5 Yhe'j)articles vibrate back and forth past their equilibrium
position.|

If you ISlot"é_l graph of the particle’s displacement from its
equilibrium position against time you would get a graph similar to
Figure 8.6.

Displacement

Equilibrium position

Time

Figure 8.6 Particles displacement against time

It’s starting to look like a wave!

Grade 9



UNIT 8: Wave motion and sound

Wave pulses and continuous waves

Poke a stick into some water and you can see water waves (ripples)

travelling away from the stick. The stick acts as a source for the
waves.

If you just poke the stick once into the water a single ripple travels

outwards. This is referred to as a wave pulse. You can see the same

thing with some rubber tubing.

Here you can see that there are no repeated vibrations, just one
short pulse.

If instead of just poking the stick into the water once you were to

move it in and out you would create a series of ripples. New ripples
would be created every time the stick went into and out of the water.

This is referred to as a continuous wave.

As long as the source of the wave continues to vibrate a continuous

wave will travel out from it.

¢ Tie one end of a long piece of rubber tubing to a fixed point

in the room.
¢ Hold the other end, so that the tubing is taut (stretched
tightly).

e Move your hand up and down briefly (Figure 8.9). Watch the
wave pulse travel along the tubing. Does it reflect at the
fixed end?

e Repeat, moving your hand from side to side.

* Try moving your hand up and down at a steady rate; try
different frequencies. What do you observe?

Figure 8.9 Sending a wave pulse along a taut rubber tube

Longitudinal and transverse waves

There are two main types of wave. These types are classified by the
direction of vibrations in relation to the direction of

Grade 9
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direction of wave motion

IXCX

direction of wave motion

Figure 8.7 A simple wave pulse
M of wave motion

[

Figure 8.8 A simple continuous
wave

KEY WORDS

equilibrium position the
central point about which
vibrations occur

matter a physical substance

medium material or
substance

vibrate to move up and
down, or side to side, about a
central point

vibrations oscillations about
a central equilibrium point

waves a series of vibrations
that travel through a medium

continuous wave a wave with
repeated vibrations

source the cause of the wave
wave pulse a wave with no

repeated vibrations




UNIT 8: Wave motion and sound

KEY WORDS wave movement. Remember, in both cases the material only

vibrates from side to side; it does not travel along the wave.

wave movement the direction
in which the wave is travelling | Transverse
crests the maximum points of
a transverse wave

transverse waves where the
vibrations are perpendicular to
the direction of wave motion

These are the waves most people think of. They go up and down (or
left to right) in a sinusoidal motion.

In a transverse wave the vibrations are at right angles to the
direction of wave movement (or energy transfer). This might be up

.. ) and down or side to side.
troughs the minimum points

of a transverse wave A transverse wave is defined as a wave where the:

* Vibrations are perpendicular (at right angles) to the direction
of wave motion.

This can be seen in Figure 8.10.

Particles in material
(R R R BN NN RN RERRRERRRRRLERUNNERRRERERRREFERAERNRRREFNRRERRNRNNHN,]

pn s wwn gy
gun®®® R,
Y 24 L

““ Yo “““
/ ."' as?® :
Ytapgumun®®
Figure 8.10 Vibrations in a

"4
transverse wave oragenp Wave motion (direction)

Examples of transverse waves include:

¢ “all electromagnetic waves — more on these in Section 8.2
light
microwaves
radio waves

Think about this... X-rays

It is easy to remember etc.

that transverse waves are * S-waves in earthquakes
the sinusoidal type. If you
look carefully at the word
transverse it has a transverse  ® ~waves on the surface of deep water.

wave in the middle!

*  ‘'waves on strings

All transverse waves comprise a series of crests (or peaks) and
troughs.

Crest (or peak)

/

N\

Equilibrium position
(mid-point)

\

Figure 8.11 Crests and troughs Trough
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UNIT 8: Wave motion and sound

Like ripples on a pond, the crests travel outwards in the same
direction as the wave motion.

You need about ten people

for this activity.

Form a line standing

shoulder to shoulder and

link arms tightly at the

elbow.

The person at the end of the

line acts as the wave source

and moves forwards and

backwards (only a few steps
\/\/\/\/\/ are needed).

You should be able to see

Wave motion (direction) the vibration travel down
the line of people.

Figure 8.12 Crests travel along with the transverse wave.

This is a transverse wave as
the vibrations are at right
angle to the direction of
wave motion.

It is important to remember that the particles just move up and
down past their equilibrium position. This can be seen by the red
particle; it just moves up and down as the wave travels from left to
right.

Longitudinal

In a longitudinal wave the vibrations are in the same direction as longitudinal waves waves

the direction of wave movement (or energy transfer). This means where the vibrations are

the vibrations are forwards and backwards along the wave. parallel to the direction of
Lo . wave motion

A longitudinal wave is defined as a wave where the:

* Vibrations are parallel to (in the same direction of) the
direction of wave motion,

This can be seen in Figure 8.13.

Particles in material

/ Figure 8.13 Vibrations in a

Vibrations Wave motion (direction) longitudinal wave

As you can see, these are much more difficult to draw! You tend to
see the particles replaced with vertical lines so the wave motion is
easier to make out.
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Think about this...

Sound waves are often drawn
to look like transverse waves.
This is because plotting

a graph of displacement
against time produces exactly
the same shape no matter
which type of wave it is. This
makes comparing them and
describing their features much
easier. However, they are
most definitely longitudinal
waves!

KEY WORDS

compressions regions of a
wave where the particles are
pushed together

higher pressure
comparatively greater pressure
lower pressure comparatively
smaller pressure

rarefactions regions of a
wave where the particles are
spread out

DID YOU KNOW?

In an explosion a shock
wave (a compression)
travels outward from the
centre of the blast. It is this
area of higher pressure that
causes damage.

212

Examples of longitudinal waves include:

* sound waves

* pressure waves

* waves forwards and backwards through a spring
P-waves in earthquakes.

When longitudinal waves travel through a material the particles -
bunch up then move further apart, then bunch up again. You can
see this in Figure 8.14.

Rarefaction

AT

01T

Figure 8.14 Compressions and rarefactions in a longitudinal wave

Regions where the particles are pushed together are called
compressions. Regions where the particles are more spread out
are called rarefactions. Compressions can be thought of as the
longitudinal version of a crest.and a rarefaction is the equivalent of
a trough.

If the longitudinal wave is travelling through a gas then a
compression can be thought of an area of higher pressure and a
rarefaction an area of lower pressure. Compressions appear to
travel through the material as the wave travels through it.

—_—

—_—
—_—
—_—

Wave Motion (direction)
Figure 8.15 Compressions travel along a longitudinal wave.

It is important to remember that the particles just move forwards
and backwards (look at the red line in the diagram).
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Both transverse and longitudinal waves can also been seen using a Activity 8.3: The human
long spring. longitudinal wave
Activity 8.4: Waves on a spring Just like before you need

Use a slinky spring. Lay it carefully on a long bench or table. about ten people for this

Ask your partner to hold one end firmly. activity. Again form a

. . . . line standing shoulder to
e As in the previous experiment, move your hand from side to shoulder and link arms

side to send a wave pulse along the spring (Figure 18.6(a)). tightly at the elbow
Send a continuous series of waves along the spring. '

This time the person at the
end of the line (still acting
as the wave source) moves
from side to side.

e There is a second way in which you can send a wave along
a stretched spring. Push the end backwards and forwards,
along the length of the spring (Figure 8.16(b)). Watch as

the segments of the spring move back and forth.
You should be able to see

the vibration travel down
the line of people and notice
areas of compression and
rarefaction. This time it

Can you observe both types of wave reflecting at the fixed end
of the spring?

@l is a longitudinal wave as
the vibrations are in the
same direction as the wave
motion.

b

Figure 8.16 Two types of wave on a stretched spring:
(a) transverse, and (b) longitudinal

In this section you have learnt that: e A transverse wave comprises a series of

¢ A wave transfers energy from one place to crests and troughs.

another as a series of vibrations. ¢ In a longitudinal wave the vibrations are

e A wave pulse is a wave with no repeated parallel to the direction of wave motion.

vibrations. ¢ A longitudinal wave comprises a series of

® The particles in the medium vibrate from compressions and rarefactions.

side to side; they do not travel through the e In a compression the particles are closer
medium with the wave. together and in a rarefaction they are more
spread out.

e There are two types of wave, longitudinal
and transverse.

e In a transverse wave the vibrations are
perpendicular to the direction of wave
motion.
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Review questions

1. Explain the difference between a continuous wave and a wave
pulse.

2. Describe what happens to particles when a wave passes through
a medium. ;

3. Explain what is meant by a transverse wave and give three
examples.

4. Explain what is meant by a longitudinal wave and give three
examples.

8.2 Mechanical waves

By the end of this section you should be able to:

¢ Define and identify the flowing features of a wave: crest,
trough, wavelength, frequency, amplitude and time period.

e Distinguish between mechanical waves and electromagnetic
waves.

e Identify transverse and longitudinal waves in a mechanical
media.

Waves characteristics

No matter what the type of wave all waves share some
characteristics. These are terms you've probably heard before.
However, each has a very specific meaning:

Wave speed. (v)

Wave speed is defined as:

* The distance the wave travels in one second.
DID YOU KNOW? This is the same as the distance one peak or one compression travels
Nothing can travel faster in one second. It’s given the symbol v (or ¢ for electromagnetic
than the speed of light waves) and like all speeds it is measured in metres per second (m/s).
through a vacuum. This is .
the ultimate speed limit. It Amplitude (a)

is equal to 300 000 000 m/s Amplitude is defined as:
(or 3 x 10® m/s). That’s fast

enough to go around the

world just under 8 times per In simple terms it's the maximum height of the wave. If you plot a

second. graph of particle displacement against distance along the wave the
amplitude can be easily determined.

* The maximum displacement from the equilibrium position.
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Displacement

Amplitude

Distance

Figure 8.17 Amplitude

Notice that it is from the equilibrium position (mid-point), it is not
the distance from top to bottom.

Amplitude is given the symbol a (or occasionally x ). As amplitude
is a displacement it is measured in metres (m).

Wavelength (A)
Wavelength is defined as:

¢ The minimum distance between identical points on adjacent
waves.

For example, it is the distance from one peak to another, or from
one compression to another. Wavelength is given the symbol A
(lambda); this is the Greek letter 1.

As wavelength is a distance it is measured in metres (m).

Displacement Wavelength

\/ \/ Distance

Again, plotting a displacementragainst distance graph allows
wavelength to be easily determined.

Figure 8.18 Wavelength

Wavelength

/

Figure 8.19 Wavelength of a longitudinal wave
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KEY WORDS

frequency the number of
waves passing each second
Hertz the unit of frequency
reciprocal the inverse of a
number which when multiplied
by the original number

equals 1

time period the time taken
for a complete wave to pass a
given point

wave equation equation
relating wave speed, frequency
and wavelength
electromagnetic waves
waves that comprise vibrations
of electric and magnetic fields
mechanical waves waves that
comprise a series of vibrations
of matter

seismic waves waves that
travel through the Earth,
produced by earthquakes

DID YOU KNOW?

The reciprocal of x is
equal to 1/x. For example,
the reciprocal of 5 is one
fifth (15 or 0.2), and the
reciprocal of 0.25 is 1
divided by 0.25, or 4.

Find the time period for the
following waves from their
frequency:

a) 20 Hz
b) 3 kHz
c) 0.2 Hz

Find the frequency of the
wave from the following
time periods:

a) 0.4s
b) 0.2 ms
c) 100 s

216

Frequency (f)

Frequency is defined as:

* The number of complete waves passing a given point per
second.

This can be determined by the number of crests or compressions
that pass a given point per second. The higher the frequency, the
greater the number of waves per second.

Frequency is given the symbol fand is measured in hertz (Hz). A
frequency of 10 Hz would mean 10 waves per second. The hertz is
the SI derived unit for frequency.

Time period (T)
Time period is defined as:
¢ The time taken for one complete wave to pass a given point.

This is the time taken for one complete particle vibration or
oscillation. It is given the symbol T"(or occasionally 'T").

As time period is just a measure of duration it is measured in
seconds (s).

If you plot a slightly different graph of particle displacement
(against time) then the time period is the time between two peaks.

Displacement Time period

Time

Figure 8.20 Time period

There are two important equations linking these terms. The first
links frequency and time period.

If you consider a wave with a frequency of 4 Hz this would mean
four waves passing a point per second. Each wave would therefore
take 0.25 second to pass the point. The time period would be 0.25
s. The time period is the reciprocal of the frequency. A wave with
a frequency of 10 Hz would have a time period of 1/10 or 0.1 s. In
terms of an equation, we get:

* frequency = 1/ time period
© f=1/T
This also means T = 1/f.

Powers of ten prefixes are often used to describe frequencies and
time periods of waves. Some common examples are listed in
Table 8.1
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Table 8.1 Common powers of ten prefixes

Prefix | Name | Value Power | Example

G Giga | x1 000 000 000 | x10° | 6.5 GHz =6 500 000 000 Hz
M Mega | x1 000 000 x10° | 3 MHz =3 000 000 Hz

k Kilo x1000 x10° | 4.2 kHz = 4200 Hz

m Milli | x0.001 x1072 | 6 ms = 0.006 s

u Micro | x0.000 001 x107° | 40 us = 0.000 040 s

n Nano | x0.000 000 001 | x10™° | 8 nm = 0.000 000 008 m

The second equation is so important in our dealings with waves that
it is often simply called the wave equation. It relates wave speed,
frequency and wavelength.

* Wave speed = frequency x wavelength

c v=fA

We will look at this in more detail in Section 8.3.

Mechanical vs. electromagnetic waves

So far whenever we've been discussing waves we have talked about
particle vibrations within the medium through which the wave is
travelling. However, some waves can also travel through a vacuumy;
there are no particles in a vacuum and so something else must be
happening.

We call waves that travel through a material as vibrations of the
material mechanical waves. Here the particles in the material
(water, wood, air, etc.) vibrate. It is these vibrations that form the
wave. All mechanical waves require a medium to travel through.
They include sound waves, water waves and seismic waves.

Electromagnetic waves, such as light, radio and x-rays, do

not require a medium to travel through. They are comprised

of vibrating electric and magnetic fields. There are no particle
vibrations at all. This means electromagnetic waves are able to travel
through a vacuum and when they travel through a medium there
are no particle vibrations inside that medium.

Examples of mechanical waves

There are lots of examples of different mechanical waves. We will
look at sound waves in Section 8.4. In this section we will look at
two types in more detail, water waves and seismic waves.

Water waves

Waves that travel on the surface of water can be thought of as
transverse waves. However, there is often a slight drift in the
direction of wave motion, so they are not perfect transverse waves.

If you throw a stone into a pond you can see ripples as crests and
troughs travelling out from the splash. If you poke a stick up and

Grade 9

In the text, we have touched
only briefly on some parts

of the electromagnetic
spectrum. Some aspects
have been missed out
almost entirely - for
example, the importance of
electromagnetic radiation in
astronomy.

Your task, together with

the rest of the class, is to

produce a large, illustrated

chart of the electromagnetic
spectrum. Your chart

will show all parts of the

spectrum, and show uses,

hazards, production and
detection.

¢ Decide how you will share
out the work. Perhaps
different groups will
take different parts of
the spectrum (infra-red,
visible, etc). Perhaps
you will look for useful
material related to
different uses of radiation
(industry, astronomy,
medicine, etc.).

e When you have gathered
images and other
information, join together
to make a long chart of
the complete spectrum.
Include on it scales of
frequency and wavelength.
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down in the water you can create continuous waves travelling out
from the source (the stick).

Water waves arise due to the surface tension on the water. As
some of the water molecules are pushed down they pull their
neighbouring particles down and a trough is created; this then
travels away from the source. {

The speed of water waves depends on the depth of the water. As the
depth of the water increases, so does the wave speed. In deep water,
water waves can travel very fast (in hundreds of km/h). /

Figure 8.21 X-ray of a marmoset
monkey, taken to see how its

skeleton compares with other, i
related species As water waves enter shallower water their speed reduces, so the

waves bunch up, the wavelength gets shorter but the amphtude
increases.

An easy way to remember this is to use: SSSS Water Waves,
shallower, shorter, steeper and slower. :

Most water waves on the open sea are caused by the action of the
wind on the surface of the water. Tsunamis are different types of
water wave created by changes to the ocean floor or the coastline
(often due to earthquakes). In deep water, tsunamis are not really
Figure 8.22 Water waves on a noticeable. They travel very fast but have a long wavelength and
pond small amplitude. As they approach land they slow down and can
grow to massive heights.

Seismic waves

Seismic waves are produced by earthquakes. They travel out from
the focus in all directions throughout the Earth. It is these waves
that usually cause the damage to buildings when they reach the
surface.

Figure 8.23 Water waves slow
down but get taller as the water
gets shallower.

DID YOU KNOW?

The speed of water waves

is given by the equation; v

= gd, v = wave speed in
m/s, g = gravitational field
strength in N/kg = 10 N/kg
and d = depth of water in m.

Figure 8.24 Seismic waves travelling out from an earthquake

There are three types of seismic waves: L-waves, P-waves and
S-waves. L-waves are complex types of rolling wave, which travel
along the surface of the Earth and cause the most damage to
buildings.

P-waves and S-waves travel through the Earth. It is the different
properties of these two waves that enable us to not only determine
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the exact location of the earthquake but also the structure of the . .

interior of the Earth. Think about this...
When water waves approach
the coastline friction with

the sea bed changes their
characteristics. This leads to
the wave rolling over itself
P-waves are able to travel through both the solid and liquid partsof ~and breaking onto the sea

the Earth's interior. front (in this case it ceases to
be a transverse wave).

The P in P-waves stands for primary, or pressure. P-waves are an
example of longitudinal waves and travel very fast (around 7000
m/s, depending on the medium). They often arrive first (hence
primary waves) as they are faster than S-waves.

The S in S-waves stands for secondary, or shear. S-waves are an
example of transverse waves and still travel fast (around 4000 m/s,
depending on the medium), just not as fast as P-waves.

i
S-waves are only able to travel through the solid parts of the Earth’s DID YOU KNOW:

interior. The fastest documented
tsunami was created by an
earthquake in Chile in May
1960. The waves travelled
the 11 000 km to New
Zealand in around 12 hours.
That’s an average speed of
around 900 km/h!

Different stations around the Earth record when the P-waves and
S-waves arrive. The time delay between the waves and data collected
from other stations can be used to work out the exact location of the
focus. For example, if three stations A, B and C calculate the focus

is 1000 km, 800 km and 500 km away from them, respectively, the
exact position can be determined through triangulation.

In addition to determining the location, we said earlier that
the differences between P- and S-waves allow us to determine
information about the structure of the Earth.

This is a very complex process but it relies on the fact that S-waves
are only able to travel through solid, whereas P-waves can travel
through solids and liquids.

Epicenter

Figure 8.25 Understanding
earthquakes might help predict
them and so save lives.

_— P-wave ‘ P-wave
shadow zone shadow zone
1 Focus
2, o
%
/ A ‘ Station C
Station A
Crust
No direct
S-waves
Figure 8.27 Using seismic waves to determine to structure of the Figure 8.26 Using triangulation
Earth to determine the location of the
As the waves travel through the Earth differences in the density focus

of the medium cause the waves to bend. It is this bending and the
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DID YOU KNOW?

Other examples of
mechanical waves include
vibrations on strings and
springs. These vibrations
are used in musical
instruments.

KEY WORDS

focus the underground point
of origin of an earthquake
tsunamis huge water waves
on the open sea often caused
by earthquakes

P-waves (primary or
pressure) a type of
longitudinal seismic wave that
can travel through the solid
and liquid parts of the Earth’s
Structure

S-waves (secondary or
shear) a type of transverse
seismic wave that can only
travel through the solid parts
of the Earth’s structure

triangulation using
measurements from three
positions to work out an exact
point

complete lack of S-waves on the opposite side of the Earth that
allows scientists to deduce that Earth must have a liquid outer core
and a solid inner core. Complex mathematics is used to determine
the dimensions of the core and the changes in density between
different layers inside the Earth.

In this section you have learnt that:

The amplitude of a wave is the maximum displacement from
the equilibrium position.

The wavelength of a wave is the minimum distance from two
identical points on adjacent waves (e.g. peak to peak).

The frequency of a wave is the number of waves passing a
given point per second.

The time period of a wave is the time taken for one complete
wave to pass a given point.

Mechanical waves are waves that comprise a series of
vibrations of matter.

Examples of mechanical waves include water waves, sound
waves and seismic waves.

Electromagnetic waves comprise vibrations of electric
and magnetic fields. No particles are required and so
electromagnetic waves can travel through a vacuum.

Electromagnetic waves form a family of waves called the
electromagnetic spectrum.

Review questions

1.

Define the terms amplitude, wavelength, frequency and time
period.

Make a scale drawing of a wave with amplitude 2 cm and
wavelength 8 cm. Mark the amplitude and the wavelength.

Look at the wave shown in Figure 8.28. What are the values of
its amplitude and wavelength?

displacement (cm)

A

0 / \ / >

distance (cm)

Figure 8.28
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4. Look at the wave shown in Figure 8.29. What are the values of its
amplitude and period?

displacement (cm)

A

0 \ ' /.\ . / >
10 20 30 40
\/ \/ time (s)

5. A wave has a frequency of 400 Hz. What is its period? Give
your answer in seconds and milliseconds.

Figure 8.29

6. A wave has a period of 20 ps (microseconds). What is its
frequency?

7. Describe an electromagnetic wave.

8. Describe the similarities and differences between P-waves and
S-waves.

8.3 Properties of waves

By the end of this section you should be able to:
e State the wave equation and use it to solve problems.

e Describe the characteristic properties of waves, including
reflection, refraction, diffraction and interference.

e Define the terms diffraction and interference.

The wave equation
We met the wave equation back in Section 8.2.
wave speed = frequency x wavelength
v=fA
v = wave speed in m/s.
f=frequency in Hz.
A = wavelength in m.

This equation can’t be derived in the traditional sense but it is more
a case of working it through logically from the definitions of v, f
and A.

If a wave has a frequency of 10 Hz it will produce 10 waves per
second. If the wavelength of each wave is 2 m then it follows
logically that the train of waves created in one second would be
20 m long.

Grade 9
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KEY WORDS

diffraction the spreading
out of waves when they pass
through a gap or around an
obstacle

interference when two or
more waves pass through the
same point and combine to
either add up or cancel each
other out

reflection when waves
bounce off a fixed surface and
change direction

refraction when waves
change speed as they travel
from one medium to another
and hence change direction

wave fronts [ines used to
represent wave crests

This is the distance travelled by the wave in one second, or the wave
speed.

2m f =10 Hz = 10 waves per second

10 waves, each 2 m long = 20 m.in one second
v =20m/s

Figure 8.30 Showing how v = fA

For example, if a wave has a wavelength of 3 cmand a frequency of
11 kHz its speed can be determined:

v =f\ State principle or equation to be used (the wave equation)

v =11000 Hz x 0.03 m. ‘Substitute in known values and complete
calculation

v =330 m/s Clearlystate the answerwith unit

Notice that wavelength must be in m and frequency in Hz.

Worked example

The two students in Figure 8.31 measure

the waves passing the end of a pier. They
measure the wavelength as 5 m and there
were nine waves passing the pier per minute.
To calculate the wave speed we must first
determine the frequency. Nine waves in one
minute means nine waves in 60 seconds so:

9 / 60 = 0.15 waves per second, so the

frequency is 0.15 Hz.

We can now use the standard wave equation:

v = fA\ State principle or equation to be used (the

wave equation)

Complete the following table:

v=0.15 Hz x 5 m Substitute in known values
and complete calculation

v=0.75 m/s Clearly state the answer with unit

Figure 8.31 These students are calculating the
speed of the waves as they pass the pier

The wave equation may be also

applied to electromagnetic waves,

Wave speed | Frequency | Wavelength | Time period | ;, which case the equation changes
(m/s) (Hz) (m) (s) slightly to:

400 2 c=f\
360 o ¢ = speed of light in a vacuum
1200 0.005 (3 x 108 m/s).

Grade 9
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Worked example

A water wave travels at a speed of 80 m/s with a wavelength
of 20 m. Calculate the time period of the wave.

In order to find the time period we must first find the
frequency of the wave:

v = fA\ State principle or equation to be used (the wave equation)
f=Vv /X Rearrange equation to make f the subject

f=80m/s /20 m Substitute in known values and complete
calculation

f =4 Hz Clearly state the answer with unit

Time period is the reciprocal of the frequency so:

T=1/f State principle or equation to be used

T=1/ 4 Hz Substitute in known values and complete calculation

T'=0.25s Clearly state the answer with unit

Wave behaviour

All types of wave exhibit certain behaviour; they exhibit reflection,
refraction, diffraction and interference.

Reflection

Reflection occurs when a wave reaches a fixed surface. The wave
cannot pass through the surface; instead, it reflects off it, so that its
direction changes. Figure 8.32 shows what happens when circular
ripples in a ripple tank reflect off a straight barrier.

¢ The ripples spread out as circles from the source.

¢ After they have reflected from the barrier, they are still circular.
They continue to spread out but they are travelling in the
opposite direction.

In a picture like Figure 8.32, we are looking down on the ripples
from above. We see the pattern of the wave crests; if we draw lines
to represent these crests, we call them wave fronts. Figure 8.33
shows straight wave fronts reflecting off a straight barrier that is at
an angle. The barrier is at 45° to the ripples arriving from the left;
the reflected ripples have been reflected through 90°.

Figure 8.33 helps us to understand the first law of reflection of light
- the angle of incidence equals the angle of reflection.

How are waves affected by a curved reflector? At each point on the
surface of a curved reflector, the waves obey the law of reflection;
that is, they reflect as if the surface at that point was flat.

Figure 8.34(a) shows the effect when plane (flat) ripples reach a
concave reflector. The ripples are reflected inwards so that they
converge at a point (we say that they are focused by the reflector).

Grade 9

Worked example

A radio station transmits at
a frequency of 97.0 MHz.
Calculate its wavelength.

¢ = fA State principle or
equation to be used
(the wave equation
applied to

electromagnetic waves)

A =c/ f Rearrange equation
to make A the subject

In this case the frequency is
97.0 MHz or 97 million Hz.

A=3x102m/s / 97 x 10°
Hz Substitute in known values
and complete calculation

A =3.1m. Clearly state the
answer with unit

Figure 8.32 Ripples in a ripple
tank reflect off a straight barrier

reflected
ripples

—)>

barrier

incoming
ripples

Figure 8.33 The lines are called
wave fronts; here they are
reflecting off a straight barrier
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Figure 8.34 Showing how plane
ripples are reflected by (a) a
concave reflector; (b) a convex
reflector

Figure 8.35 Wave fronts change
direction when their speed
changes

224

Figure 8.34(b) shows how ripples are affected by a convex reflector;
in this case, the straight ripples are reflected so that they become
curved. They take the form of circular ripples spreading out as
though they were coming from a point on the other side of the
barrier.

Figure 8.34(a) also tells us how circular ripples will be affected by a
concave reflector. If they start from the focus of the reflector, they
will be reflected so that they become straight ripples. (To see this,
simply reverse the arrows in the diagram.)

(@) concave (b) convex
reflector . reflector

7
incoming incoming i
fipples ripples |
VI
) I
reflected reflected\
ripples ripples
Refraction

The word refraction means breaking. Refraction is a property of all
waves (light, sound, etc.). It happens when waves change speed as
they move from one material to.another.

Refraction can be shown using a ripple tank. Ripples travel more
slowly in shallower water than in deeper water, because they drag
on the bottom. A shallow area can be created in the tank by placing
a sheet of glass in the tank; typically, the water is 8 mm deep, but
only 3 mm deep above the glass.

deep water shallow water
= faster waves = slower waves

incoming

ripples
reflected
ripples

Figure 8.35 shows the pattern that results when the boundary
between the deep and shallow water is at an angle to the wave
fronts. Things to notice:

¢ The ripples change direction as they enter the shallower water.

¢ The ripples are closer together in the shallower water - their
wavelength has decreased.

You will learn more about refraction of light in Grade 10.

Grade 9
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Introduction to diffraction and interference

Diffraction and interference are behaviours totally unique to
waves. Essentially diffraction is the spreading out of waves when
they travel through gaps or around obstacles, whereas interference
is when two waves pass through each other and either add up or
cancel each other out.

Diffraction

Imagine you are sitting in a room. The door is open, and you can
hear music coming from the radio in the next room. You cannot see
the radio, but the sound waves it produces pass through the door
and spread out into the room you are in. This spreading out is an
example of a wave phenomenon called diffraction.

Diffraction occurs when a wave passes the edge of an obstacle,

or through a gap. It can be investigated using a ripple tank.

Figure 8.36 shows what happens when ripples reach a barrier with a
gap in it. From the photographs you can see the following:

¢ The ripples spread out into the space beyond the gap.

¢ The narrow gap has more effect than the wide one - there is
more spreading out with the narrower gap.

The effect of diffraction is greatest when the width of the gap is the
same as the wavelength of the waves, as in Figure 8.36(a). A bigger
gap has less effect.

Why do we not notice diffraction of light? The wavelength of light
is very short - less than one-millionth of a metre. This means that

a very tiny gap is needed to diffract light - light waves will not be
noticeably diffracted as they pass through a doorway: In fact, light
is diffracted by very small gaps or obstacles. Figure 8.37 shows the
Moon hidden behind a church spire. The photo was taken at a time
when there were many tiny grains'of pollen in the atmosphere, and
the light from the Moon is being diffracted by these, causing a ‘halo’
around it. The size of the pollen grains is similar to the wavelength ——
of light. '

Grains of talcum powder are very small - similar to the
wavelength of light. They can diffract light to form a pattern
like the halo shown in Figure 8.37.

¢ Find two glass microscope slides.

¢ Sprinkle a very little talcum powder on one slide. Press the (b)
second slide on top of the first, and slide it around to give Figure 8.36 Diffraction of ripples
a thin film of powder between the two slides. as they pass through a gap in
* Hold the double slide close to your eye and look at it a ripple tank; the gap in (a) is
through a distant lamp. Can you see a diffraction halo similar in size to the wavelength
around the lamp? of the ripples; in (b) it is much
bigger.

Grade 9 ﬁ
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Figure 8.37 You may have seen a
‘halo’ like this around the Moon,
or around the Sun at sunset. It

is caused by tiny pollen grains

or water droplets in the air,
diffracting the light

Interference

What happens when two waves meet? A strange feature of waves is
that they pass straight through each other. Here is an example with
two sets of light waves. Switch on two torches (flashlights). Direct
their beams so that they cross over. The light waves from one torch
pass straight through the light waves from the other. If light was
made of particles, they would bounce off each other.

Now we need to think about what happens at the point where the
paths of the two sets of waves cross.

Constructive and destructive interference

To observe interference, we need two sets of waves. Figure 8.38
shows that there are two kinds of interference:

* If the two waves are in phase'(in step) with each other, they
combine to make a bigger wave, with twice the amplitude. This is
called constructive interference.

* If the two waves are out of phase with each other, they cancel
each other, so that there is no wave. This is called destructive
interference:.

SOQOOC =

Figure 8.38 Two waves can interfere (a) constructively, or
(b) destructively

Note that the two sets of waves must have exactly the same wavelength
(and frequency) if they are to interfere like this. Also, their amplitudes
should be the same if they are going to cancel exactly.

It is difficult to see interference with light. One example is the
coloured patterns you see where there is a thin film of oil on a
puddle of water, or if you look at the shiny surface of a compact

disc (CD). Where you see a bright red colour, for example, red light
waves are reflecting off the surfaces of the oil or CD and interfering
constructively to produce a bright colour. Different colours interfere
at different angles to produce the pattern.

Grade 9
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Interference of ripples

A ripple tank can show the interference patterns produced when
two sets of ripples meet. There are two ways to do this:

* Use two vibrating dippers to produce two sets of circular ripples.
Where the ripples overlap, they produce a characteristic pattern
(Figure 8.39). At some points, the ripples add together (interfere
constructively) to produce a large effect. In between, they cancel

out so that the surface of the water is unperturbed. Figure 8.39 The two vibrating
* Alternatively, use a straight vibrating source to produce parallel balls produce sets of ripples
ripples. Direct these at a barrier with two gaps; the ripples pass that overlal? with each other
through the gaps and diffract into the space beyond. Here, they 0 produce an interference
overlap to produce an interference pattern similar to the one pattern. At the top of the photo
shown in the photograph. youcan clearly see regions

where the ripples are cancelling
In between are regions of
In this section you learnt that: con§tructive jnterference

® The wave equation is v = fA. -
e When waves bounce off a surface, this is called reflection. KEY WORDS

¢ When waves travel from one medium to another, their speed constructive interference

may change and so they may bend. This is called refraction. W/.vere two waves are in phgse
with each other and combine

to make a bigger wave

destructive interference

e Interference is when two or more waves pass through the where two waves are out of
same point and either add up or cancel each other out. phase with each other and

combine to cancel each other
Review questions

out
1. A guitarist plays a high note; its 'frequency is 2000 Hz. The
sound waves produced have a wavelength of 0.17 m. What is
the speed of sound in air?

¢ Diffraction is the spreading out of waves when they pass
through a gap or around an obstacle.

N

A drummer plays a note with a frequency of 85 Hz. What is the
wavelength of this sound wave in air? (Speed of sound in air =
340 ms™)

w

A radio station broadcasts an FM signal with a wavelength of
2.85 m. If the speed of radio waves is 3 x 10° m s, what is the
frequency of the FM signal?

-

Explain the terms reflection, refraction, diffraction and
interference. :
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KEY WORDS

longitudinal mechanical
waves waves comprising
vibrations in matter where the
vibrations are parallel to the
direction of wave motion

audible range the range of
sound frequencies that can be
detected by the ear

ear drums membranes in the

ear that vibrate when a sound
wave enters the ear canal

e Stretch a piece of elastic
and pluck it. Note the
way it moves.

® Press one end of a ruler
down on a table. Twang
the free end.

e Strike the prongs of a
tuning fork against a
rubber stopper; note how
they move backwards and
forwards. Let one of the
prongs touch a table-
tennis ball hanging on a
thread. The ball moves.
Touch the still surface of
water with the moving
prongs; ripples spread out
across the surface.

Table 8.2 Vibrations in musical
instruments

8.4 Sound waves

By the end of this section you should be able to:

¢ Identify sound waves as longitudinal mechanical waves
and describe how the waves are produced and how they
propagate.

e (Compare the speed of sound in different materials and
determine the speed of sound in air at a given temperature.

¢ Define the intensity of a sound wave and solve problems
using the intensity formula.

e Explain the meaning of the terms echo, reverberation,
pitch, loudness and quality.

e Explain the reflection and refraction of sound and describe
some applications.

Sound waves are longitudinal mechanical waves. Sound waves
are produced whenever an object vibrates. When you speak your
vocal cords in your throat vibrate as the air is pushed over them.
Different musical instruments produce sound by making a part of
the instrument vibrate.

As sound waves are mechanical waves they require a medium to
travel through. Sound obviously travels through air but it also travel
through other gases, as well as solids and liquids. Importantly,
sound cannot travel through a vacuum.

¢ Hang an electric bell by cotton thread from the stopper of
a bell jar (Figure 8.40). Make the bell ring. Place the jar on
the plate of an exhaust pump. Can you hear the sound?

e Pump air out of the bell jar, letting the bell ring all the time
inside the jar. What do you observe about the sound?

thread supports

Instrument Vibration
Drums Drum skin
Piano Strings
Guitar, violin, | Strings and
etc. body of
instrument

Trumpet and
trombone

Lips (causing
the air inside
to vibrate)

electric bell

l«—— bell jar

to exhaust pump flat metal plate

Figure 8.40 Can sound pass through a vacuum?

Grade 9
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Displacement
Equilibrium
/\;%ition A
\/ v Distance

Figure 8.41 Displacement against
distance

It is important to realise that sound waves are longitudinal. We
often see pictures of sound waves looking like transverse waves.
Remember, this is because a graph of particle displacement against
distance or time for both transverse and longitudinal waves looks
like Figure 8.41.

Sound waves are a series of compressions and rarefactions and we
can see this by conducting a very simple experiment.

If you place a candle in front of a speaker and then play sounds
through the speaker (ideally just one tone) you will see the candle
flame wobble from side to side.

This shows that the vibrations are parallel to the direction of wave
motion. In fact if you think about how the speaker produces the
sound then it is even more obvious.

L

e A string telephone:

Join the bottoms of two

empty tin cans with

string. Speak into one
tin while a friend listens
with the other tin. Keep
the string tight so that it
presses against the metal.
Can sound pass through a
I ‘ string?

¢ lay a ticking watch or
clock at one end of a
Hl ‘ table. Now place one ear

il
il

Direction of sound wave

against the table, at the
other end. Can you hear
the ticking? Does sound
travel better through

wood than through air?

Figure 8.43 How a speaker produces a sound wave

If you look closely at a speaker you will see the speaker cone moving e
in and out. As it moves out it creates an area of higher pressure as it
compresses the air (B). The cone then moves back in and so creates

an area of lower pressure, and so a rarefaction (C). This process
continues, creating a longitudinal wave (D).

Hearing

When these vibrations reach our ears they travel down our ear canal
and make our ear drums vibrate. These vibrations are transmitted
to special cells inside your skull, which send a signal to your brain
that we interpret as sound:

When we are young we can detect a range of frequencies from
around 20 Hz to 20 000 Hz. This is referred to as our audible range.

This varies from person to person and factors such as age and
exposure to loud music dramatically changes this range. Table 8.3
on the next page shows the audible range of several other animals.

Grade 9

Clap your hands when
swimming under water.
Can you hear the sound
easily? This might be
tricky and so it helps if
you have a partner who
can clap while you swim!

——
Wave Motion (direction)

ﬂ

Figure 8.42 Demonstrating sound
waves are longitudinal
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Think about this...

To help remember the audible
range of humans think of
20:20 vision. This is often
used to represent good
eyesight. Well, humans also
have 20:20 hearing, that is
20 Hz to 20 kHz!

Figure 8.44 Different animals
have different audible ranges.

Table 8.3 Different audible ranges

Animal Approximate
audible range
(Hz)

Human 20-20 000

Bat 10-200 000

Dog 15-40 000

Dolphin 120-110 000

DID YOU KNOW?

Elephants can detect very
low frequency sound waves.
This is used for long-
distance communication
between herds. Due to its
low frequency it has a range
of around 10 km.

The speed of sound

The speed of sound through air is around 340 m/s; this is around
900 000 times slower than light, but still pretty fast.

In storms thunder and lightning occur at the same time. However,
the light travels much faster than the sound. This means we always
see the flash of lightning before the sound of thunder arrives. The
greater the time delay, the further away the storm.

In fact if we assume the light arrives without any real delay, then for
every second between the lightning and the thunder the storm is
around 300 m away.

A signal generator connected to a loudspeaker can produce
sounds of a known frequency (Figure 8.45).

loudspeaker |

signal generator

Figure 8.45 Turning the dial on the signal generator changes the
frequency of the sound from the loudspeaker.

e Listen as the frequency becomes higher and higher. At what
frequency does it become inaudible?

e Repeat as the frequency is reduced.

e Imagine that someone in your class claims to be able to
hear frequencies that are higher than you can hear. How
could you check that they are telling the truth?

e It is said that younger people can hear higher notes than
older people. How could you test this idea?

Sound travels at different speeds through different materials. The
speed of sound through water is around five times faster than in air
and in metals like iron it is faster still (around 15 times).

Grade 9
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Table 8.4 Speed of sound in different materials

Medium Speed of sound (m/s)
Dry air at 0°C 331
Dry air at 30°C 349

Moist tropical air |351

Water at 20°C 1484
Seawater at 15°C |1510
Wood 3850
Figure 8.46 A storm
Iron, steel 5000
Glass 5000

In general, the denser the material, the faster the speed of sound.

This is because the particles in the medium are closer together and

so the vibrations pass from particle to particle much quicker.

A clap of thunder arrives five
seconds after the lightning.
How far away is the storm?
What would happen to the
time delay if the storm were
moving towards you?

When sound waves travel through gases, things are a little more
complex due to the motion of the particles. The density of the gas
has an effect, and if two gases were at the same temperature then
sound would travel faster through the denser gas. However, the
temperature of the gas has a significant effect.

When a gas is at a higher temperature the average kinetic energy

of the particles is higher. This means on average the particles are

moving faster (see Unit 7). The faster the particles are moving, the Table 8.5 Speed of sound in air
faster the speed of sound through the gas. This can be seen in Table

8.5. Air temperature | Speed
As air gets warmer the speed of sound through it increases. The (°0) (@B
speed of sound through any gas may be calculated using the -20 319
equation below: -10 325
« v=V(R*T) 0 331
y = the adiabatic index of the gas (a constant for the gas). For air, 10 337
this equals 1.4. 20 343
R* = another constant for the gas. It equals the molar gas constant / 30 349

the molar mass (R / M). For air. this is 286 m?/s* K.
T = the temperature in K.

For air, this can be simplified to: *

© v=V(kT)
where k =y x R*=1.4%286 m?/s* K = 400 m?/s* K and so:
o v=v(400 x T)

At 25 °C the speed of sound through air may be calculated using
this equation:

o v=(400 x T)
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DID YOU KNOW? Remember, the temperature must be in K not °C. So, 25 °C =298 K
Mach numbers (named tv= \/(400 x 298 K)
after the Austrian physicist * v=345m/s
Ernst Mach) are often used
to quantify the speed of

fast moving aircraft. Mach

1 represents the speed of
sound, Mach 2 twice the
speed of sound, etc. Aircraft

A simple way to determine the speed of sound is to. measure the
time it takes for a sound wave to travel a known distance.

travelling at speeds greater e Stand facing a tall wall, at a distance of about 100 m
than Mach 1 are flying faster (Figure 8.48). Measure the distance to the wall.

than the speed of Sounfi and e (lap two blocks of wood together, and listen to the echo.
are said to be supersonic. The time interval is too short to measure accurately.

e Now clap the blocks together so that each clap coincides
with the echo of the previous one. Using a stopwatch, time
a sequence of 10 claps. (Count 0, 1, 2, 3 ... 9, 10.)

e Now you know the time taken for the sound to travel to the
wall and back ten times. Use this information to calculate
the speed of sound in air.

o
CLAP
~CLAP -

J
/ J
)

)
)))

( ( (¢ ( (¢
Figure 8.47 Modern jet fighters e
are able to travel much faster
than the speed of sound.

Figure 8.48 Using echoes to measure the speed of sound

How do we describe sound waves?

What is the difference between louder and quieter sounds? Or
higher pitch and lower pitch sounds? And why does the same note
sound different from a violin to a piano? In order to answer these
questions we need to be able to observe what is going on in terms of
the particles.

Time
\/ \/ Sound waves are longitudinal mechanical waves, but we can use

an oscilloscope and microphone to help ‘see’ sound waves. An
Figure 8.49 The displacement of  oscilloscope produces a trace on the screen that varies depending
air particles against time on the sound entering the microphone. It is essentially a trace of the
displacement of the particles against time.

Displacement

Using an oscilloscope we can see the effect of changing volume and
pitch.

H Grade 9
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Loudness

The loudness of a sound depends on the amplitude of the sound
wave. The greater the amplitude, the louder the sound.

In louder sounds the particles move further from their equilibrium
position.

The loudness of a sound is measured in decibels (or dB). This is a
complex scale. It is logarithmic not a linear scale. In other words
40 dB is much more than twice as loud as 20 dB.

Table 8.6 The loudness of different sounds

Sound Loudness (decibels)
Whisper 10

Leaves rustling in the wind 17

Shouting 70

Loud music 100

Jet engine 120
Pitch

The pitch of a sound depends on the frequency of the sound wave.

The higher the frequency of the sound waves the higher their pitch.

In higher pitch sounds the particles vibrate more often past their
equilibrium position per second.

Timbre (quality)

The same note played on
different instruments sounds
distinctly different. This
difference is referred to the
timbre (or quality) of the
sound. Quality does not mean
good or bad, it just refers to the
difference in the sound.

whistle

You can see from Figure 8.53
above that the same note
produces a different trace on

the oscilloscope. This is because
of the complex nature of the
number of different vibrations
produced by the instrument.

trumpet

Figure 8.53 The same
note produced by different

instruments violin

Grade 9

oscilloscope

microphone

Figure 8.50 A simple oscilloscope

e

softer louder

Figure 8.51 The difference
between a loud sound and a quiet
sound

-

lower pitch higher pitch

Figure 8.52 The difference
between a low pitch sound and a
high pitch sound

KEY WORDS

loudness the audible strength
of a sound, which depends on
the amplitude of the sound
wave

pitch highness or lowness of a
sound, which depends on the
frequency of the sound wave

timbre the quality of a sound
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s

Figure 8.54 Different instruments
produce different quality notes.

Figure 8.55 It is important to
reduce the echo in recording
studios.

DID YOU KNOW?

“A ducK’s quack doesn’'t
echo” is a much-quoted
scientific myth. The truth is
that a duck’s quack does, it’s
just quite hard to hear due
to the shape of the sound
wave produced.

Figure 8.56 The ripples get smaller
as the energy is spread out.

234

e Connect a signal generator to an oscilloscope and to a
loudspeaker. Watch how the trace on the scope changes as
the controls of the signal generator are altered.

¢ The sound is made louder: how does the trace change?
¢ The frequency is made higher: how does the trace change?

e Connect a microphone to the oscilloscope, in place of
the signal generator. Make different sounds in front of
the microphone and observe the traces. (Try clapping,
whistling, playing an instrument.)

Echoes, echoes, echoes, echoes....

Sound, like all waves, is able to reflect off surfaces. A reflection of
sound is called an echo.

You get the best echoes off solid surfaces, like metal sheets or stone.
Softer surfaces tend to absorb the sound waves and so there are
reflected less. You might have noticed this inside a cave or inside a
building with solid stone walls.

If the sound produced is in an enclosed space it may produce a
number of echoes. It sounds like the sound is building up then
slowly decaying away. This is called reverberation.

This is most noticeable when the source of sound stops but the
reflections continue. Each time they reflect off the surface they
lose some energy and so the amplitude decreases and the sound
becomes quieter.

The intensity of sound waves

The further the source of sound is away from you the quieter the
sound. This is because the energy is spread out over a much wider
area.

This happens with all waves. If you look closely at the ripples on a
pond you can see the amplitude of the wave decreases as you get
turther away from the source.

The intensity of any wave is defined as the energy received by each
square metre per second. A higher intensity would mean more
energy per second falling on each square metre.

* Intensity is equal to the energy incident on each square metre
of a surface per second.

This gives us units of intensity as W/m? we use W as this is just
energy per second.

The further away the surface the more the energy gets spread out
and so the intensity falls. Imagine standing near a wall and shouting
at it (I know it sounds odd!). The sound spreads out as it leaves your
mouth and strikes an area of the wall.
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Figure 8.57 Stand close to a Figure 8.58 Stand further away
wall and the intensity is higher. and the intensity drops.

However, if you stand further away the sound has to travel a greater KEY WORDS
distance before it strikes the wall and so it spreads out to cover a

wider area. echo a reflection of a sound
wave

The intensity is now lower as the energy per second per square

metre has dropped - it’s more spread out. intensity the energy received
by each square metre of a

surface per second
reverberation multiple

In all cases the intensity of a wave can be determined using the
equation below.

* intensity = power /area reflection of sound waves in
If we think about the sound travelling out in all directions (in 3D) an enclosed space 50 that
from a source we can see that the energy spreads out in the shape the sou _’7d continues after the
of a sphere. So in this case the area is the surface area of a sphere source is cut off

(given by 4n7%). This means the equation becomes: inverse square relationship

where if one variable increases
by a factor of x? then the other
* I=P/4nr ' decreases by a factor of X

From this equation we can see that if the wave travels twice as far
then the intensity falls to a quarter of its value, Three times as far
and it is a ninth. This is because the energy is spread over a much
larger area, double the distance and it's four times the area, as shown
in Figure 8.59.

* intensity = power /area

sphere area

4nr2 intensity at

surface of sphere

Source power

Figure 8.59 Intensity against
distance

This kind of relationship is called an inverse square relationship.

As the distance goes up by a factor of x, the intensity falls by x. This

produces a graph like that in Figure 8.60 on the next page.
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UNIT 8: Wave motion and sound

Think about this...

Sound waves speed up as they
enter denser materials; this
means when they refract they
bend towards normal unlike
light (which slows down in
denser materials).

KEY WORDS

ultrasound high frequency
sound waves, above human
hearing

hydrophones underwater
microphones
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Figure 8.60 A graph showing how intensity varies with distance from
source.

You will come across a number of inverse square relationships in
the next few years.

Worked example

A speaker has a power output of 150 W. Determine the
intensity of the sound 1.5 m from the speaker.

I =P/ 4nr* State principle or equation to be used (intensity for a
point source)

I=150 W / 4mt x (1.5 m)? Substitute in known values and
complete calculation

I=5.3 W/m? Clearly state the answer with unit

The intensity of a sound wave is measured to be 0.7 W/m?
when 2.0 m from the source. Calculate the power of the source.

I=P [/ 4nr* State principle or equation to be used (intensity for a
point source)

P =1 x 4nr* Rearrange equation to make P the subject

P=0.7 W/m? x 47t x (2.0 m)? Substitute in known values and
complete calculation

P =35W Clearly state the answer with unit
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UNIT 8: Wave motion and sound

Uses of sound waves

Sound waves have many uses, in addition to the obvious uses in
communication and music.

Most of these uses depend on the behaviour of the sound waves when
they reflect or refract. Sound, like all waves, reflects off surfaces, but
sound waves also reflect off the boundary between materials if there
is a change in density between the materials. The greater this change
in density the greater the amount of sound reflected.

In Figure 8.61, sound waves refract as they enter a medium with a
different density (the red area). You can also see the sound waves Figure 8.61 The reflection and
reflect off the boundary between the materials (the green arrows). refraction of sound through

It is these reflections and refractions that can tell us a great deal wffgrent materifl}

about the object and so make sound very useful indeed.

In fact for most uses ultrasound is used instead. Ultrasound is =P

just sound waves with a high frequency and so a relatively short
wavelength. This means it does not diffract very much and so it
remains as a tight focused beam. Yy

transmitter

Ultrasound is any sound above the audible range of humans: It can
be defined as:

* Sound waves with a high frequency, above human hearing,
above 20 kHz.

One example of the use of sound is SONAR: This stands for SOund
Navigation And Ranging, which is the sound wave equivalent of
radar. It is most often used by ships to determine the depth of the
sea bed, the location of a shoal of fish, or even the position of an Figure 8.62 Using SONAR to
enemy submarine. determine the depth of the sea

Sound is transmitted by the ship-and it travels through the water. It
reflects off the sea bed and travels back up where it is detected by
special underwater microphones called hydrophones.

It is then a relatively simple process to determine the distance
travelled by the sound using distance = speed of sound through
water x time taken. The depth is then half this distance as the sound
has had to travel there and back!

Ultrasound is also used in pre-natal scanning. Here the ultrasound
travels into the womb and reflects off the unborn baby. This sound
is harmless (unlike using X-rays)'and allows doctors to monitor the
progress of the developing baby.

Ultrasound is also used to detect flaws in metals and even to help
people park their cars! In'each case it is the reflection and refraction
of the sound that makes the job possible.

The speed of sound through sea water is around 1500 m/s.

A wave pulse is sent from a ship and takes 0.7 s to return.

Calculate the depth of the water. Figure 8.63 Using ultrasound to
monitor a baby
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UNIT 8: Wave motion and sound

Sound waves are mechanical longitudinal waves produced
when objects vibrate.

Sound waves travel through different media as a series of
compressions and rarefactions.

In general, sound travels faster in denser materials; however,
the warmer the gas the faster the speed of sound through it.

The amplitude of a sound wave affects its loudness and the
frequency of the sound wave its pitch.

A reflection of sound is called an echo and if several echoes

are trapped inside a room or object a reverberation may be
heard.

The intensity of a sound wave is the energy received per
square metre of a surface per second.

Sound has many uses including SONAR and pre-natal
scanning. Both rely on the sound waves reflecting and
refracting off different materials.

Review questions

1.

Compare the speed of sound through the different materials in
the Table 8.4 (speed of sound through materials). Explain the
differences in the speed of sound:

a) between solids, liquids and gases
b) between warm air and cold air.

Explain the meaning of the terms loudness, pitch and timbre.
Illustrate your explanations with diagrams and examples.

A speaker produces a sound output at a power of 500 W.
Determine the intensity at:

a) 20m
b) 4.0m
¢) l6m

The intensity of a sound source is measured 3.0 m from the
source and it found to be 4.0 W/m?. Calculate the intensity
received at:

a) 1.0m
b) 5.0m

Describe one possible use of sound waves.
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UNIT 8: Wave motion and sound

End of unit questions

1.

a) In which type of wave are the vibrations at right angles to
the direction of travel?

b) What is the name given to the other type of wave?
c) Describe the vibrations in this type of wave.
d) Give an example of each type of wave.

e) Describe how you would demonstrate each type of wave
using a slinky spring.

Complete the table and draw the following waves to scale:

Wave Frequency | Wavelength | Time | Amplitude
speed | (Hz) (m) period | (m)

(m/s) (s)
720 45 8.0
40 0.05 4.0

6000 0.002 3.0

An electromagnetic wave has a wavelength of 10 nm. Calculate
its frequency and identify to which part of the electromagnetic
spectrum the wave belongs.

What wave phenomena are described here?

a) A light wave slows down as it passes from air into water;
this causes it to change direction.

b) Waves on the sea pass between two high walls into a
harbour. They spread out into the space behind the walls.

c) Two alarm sirens are emitting a loud note; at points
between the two sirens the sound is very loud, but at other
points it is much fainter./

d) An explorer shouts into a dark cave; a fraction of a second
later, he hears the sound of his own voice.

Draw diagrams to illustrate the difference between constructive
and destructive interference.

Two identical waves of amplitude 5 cm meet in a large ripple
tank. What will be the amplitude of the combined wave at a
point where they interfere constructively? And where they
interfere destructively?

Explain why, if someone is playing a guitar in the next room,
you may be able to hear the sound of the guitar through the
open doorway, although you cannot see the guitarist because
she is round the corner.

What is meant by an echo?

A child claps her hands together whilst facing a tall building.
The echo reaches her ears after 0.6 s. How far is she from the
building? (Speed of sound in air =340 m s™..)
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UNIT 8: Wave motion and sound

10. Outline a method of finding the velocity of sound in air.

11. In an experiment to measure the speed of sound in a steel rod,
it is found that a sound will travel along a rod of length 2 min a
time of 0.000 4 s. What is the speed of sound in steel?

12. Explain why a flash of lightning is usually seen before the clap
of thunder is heard.

13. A ship is sailing in a part of the sea where the bed is 600 m
below the ship. The ship uses sonar to detect the seabed. How
long will it take a pulse of sound to travel to the seabed and
return to the ship? (Speed of sound in water = 1500.m s°'.)

240 Grade 9
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direction 32-33
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absorption 176, 191-192
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Hooke's law 47-49, 51, 93
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hydraulic machines 157, 158-159
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law of conservation of 76-78
Newton’s laws and 79-80, 81-82
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load 47, 117
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machines 117-118
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efficiency of 121-123
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hydraulic 157, 158-159
simple 118-119, 124-136
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mass 58-59
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mass-spring systems 105
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of simple machines 125, 126, 127,
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potential energy and 98-99
variable forces 92-94
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Moon 34, 59-60; 225, 226
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Newton’s laws of motion
first law 45, 97
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81-82
second law 55-58, 62-63, 79-80,
97
third law 71-74
newtons (N) 44, 57
Newton’s pairs 72-73
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nuclear power stations 106
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oscilloscopes 232-233
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Pascal’s principle 157-158
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pitch 233

plastic deformation 51
Plimsoll line 167
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pollution 106
potential energy 98-100, 102
in oscillating systems 104-105
work and 98-99
power 110-111
velocity and 113-114
pre-natal'scanning 237
pressure 141-142
depth and.154-155
direction of 156
effect-on volume 153
in fluids 154-156
measuring 161-162
pulley systems 119, 134-136, 137
pumps 148-150
Pythagoras’s theorem 5-7, 54

rack and pinion 134

radioactive waste 106

rarefactions 212

real weight 61

reference frame 37

reflection 223-224, 234, 237

refraction 224, 237

relative density 153-154, 167

relative velocity 37-39

renewable energy resources 106-108

resultant forces 7-8, 53-55, 57-58,
62-63
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ripple tanks 227
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screws 119, 127

seismic waves 218-220

simple machines 118-119, 124-136
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SONAR 237

sound waves 208, 212, 228-229
characteristics 232-233
intensity 234-236
reflection 234, 237
refraction 237
speed of 230-232, 236
uses 237

specific gravity 154

specific heat capacity 191-192
determination of 193-197
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of fusion 201, 202, 203-204
of vaporisation 201-202

speed 17-18
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spring constant 49
springs
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effect of forces on 47-49
elastic potential energy 100
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temperature 153, 172-174
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of gases 188

of liquids 187-190

of solids 179-184, 188
thermometers 186
timbre 233
time period 216
total mechanical energy 100
transmission 133
transverse waves 210-211, 213
triangle of vectors 11
triangulation 219
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ultrasound 237
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