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Abstract This study developed an approach to assess the vulnerability to climate change
and variability using various group multi-criteria decision-making (MCDM) methods and
identified the sources of uncertainty in assessments. MCDM methods include the weighted
sum method, one of the most common MCDM methods, the technique for order preference
by similarity to ideal solution (TOPSIS), fuzzy-based TOPSIS, TOPSIS in a group-decision
environment, and TOPSIS combined with the voting methods (Borda count and Copeland’s
methods). The approach was applied to a water-resource system in South Korea, and the
assessment was performed at the province level by categorizing water resources into water
supply and conservation, flood control and water-quality sectors according to their manage-
ment objectives. Key indicators for each category were profiled with the Delphi surveys, a
series of questionnaires interspersed with controlled opinion feedback. The sectoral vulner-
ability scores were further aggregated into one composite score for water-resource vulner-
ability. Rankings among different MCDM methods varied in different degrees, but
noticeable differences in the rankings from the fuzzy- and non-fuzzy-based methods sug-
gested that the uncertainty with crisp data, rather widely used, should be acknowledged in
vulnerability assessment. Also rankings from the voting-based methods did not differ much
from those from non-voting-based (i.e., average-based) methods. Vulnerability rankings
varied significantly among the different sectors of the water-resource systems, highlighting
the need to assess the vulnerability of water-resource systems according to objectives, even
though one composite index is often used for simplicity.

1 Introduction

Assessing vital systems’ impacts on and vulnerability to climate change is of great interest for
people who need to better cope with hazards and threats to those systems. Emphasis is being
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shifted from an impact-led approach to a vulnerability-led approach to assessment. An impact-
led approach to climate change focuses on the climate hazards to which people are exposed,
while a vulnerability-led approach concentrates on the social, economic and institutional factors
that influence how people respond to climate hazards (Adger et al. 2004). The need for adapting
to climate change is growing, and assessments of the adaptive capacity and resulting vulnera-
bility of human systems are focused on developing adaptation polices and strategies.

Vulnerability has been used in many different ways in various research communities.
Vulnerability is often found in risk and disaster management analysis and is conceptualized
as the dose–response relationship between an exogenous hazard to a system and its adverse
effects. In political economy and human geography, vulnerability is an a priori condition of a
community that is determined by socio-economic and political factors (Fussel and Klein 2006).
The Intergovernmental Panel on Climate Change (IPCC) combined these concepts, and defined
vulnerability as “the degree to which a system is susceptible to, or unable to cope with, adverse
effects of climate changes, including climate variability and extremes. Vulnerability is a
function of the character, magnitude, rate of climate variation to which a system is exposed,
its sensitivity, and its adaptive capacity” (McCarthy et al. 2001). Here, the concept of climate-
change vulnerability integrates the external dimension such as the ‘exposure’ of a system to
climate hazards, with the internal socio-economic dimension such as its ‘sensitivity’ and
‘adaptive capacity’ to climate stressors (Fussel and Klein 2006). While the IPCC suggested
that vulnerability is a function of exposure, sensitivity and adaptive capacity, various frame-
works of climate-change vulnerability have also been suggested (e.g., Moss et al. 2002; Brooks
et al. 2005). Moss et al. (2002) developed a vulnerability-resilience indicator (VRI) prototype
model, defining vulnerability as the sensitivity and adaptability of a system to climate change,
and defined the difference between the sensitivity and adaptive capacity as the VRI.

To assess vulnerability in a quantitative manner, key indicators must be selected to represent
vulnerability, and multiple indicators are often aggregated to a composite index (Adger et al.
2004), which is often used to assess human and environmental security and vulnerability to
various hazards, as observed in various well-known national-level indices such as the Human
Development Index (Moss et al. 2002). Climate-change vulnerability assessments have been
performed in various spatial scales and sectors (e.g., Moss et al. 2002; O’Brien et al. 2004).
Moss et al. (2002) estimated national-level VRI scores for 38 countries under both current and
potential future conditions, based on forecasts by an integrated assessment model. The VRI
aggregates various sectors, including infrastructure, food security, ecosystem, human health,
water resources, economics, human resources and environmental capacity.

For water-resources management, indicator-based vulnerability assessments have been widely
performed aswell. For example, Gleick (1990) evaluated climate-change vulnerabilitywithin the 18
water-resource regions of the US using an index, which is composed of five indicators of regional
vulnerability: storage ratio, demand ratio, hydropower use, ground-water overdraft and streamflow
variability. Additionally, he established warning thresholds for the each of the indicators.

Vulnerability in association with decision-making problems has been the focus of few
studies. Rankings of vulnerability scores can be translated into prioritizing climate-change
adaptation plans as a decision-making process involves the selection of the preferred
alternatives among a number of alternatives to achieve certain objectives. Decision-
making processes are often complicated, with multiple conflicting criteria, and multi-
criteria decision making (MCDM) methods have been successfully employed to identify
desired policy alternatives. Most climate-change vulnerability scores are aggregated by the
weighted averages of measures in key indicators, a weighted sum method (WSM), which is a
classic MCDM approach. Several recent studies used various MCDM methods to assess
vulnerability (e.g., Chung and Lee 2009; Jun et al. 2011; Lee et al. 2013). Jun et al. (2011)
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developed a framework to quantify the flood with a technique for order preference by
similarity to ideal solution (TOPSIS) method, one of MCDM methods.

In this study, we developed an approach to assess the variability to climate change and
variability using various group MCDM methods and identified the sources of uncertainty in
assessments. We focused on group MCDM methods as many decision-making problems are
solved with a collaborative effort and, thus, MCDM problems for a group decision envi-
ronment are not uncommon. We used WSM, TOPSIS, fuzzy TOPSIS, TOPSIS in a group
decision environment, as well as TOPSIS combined with voting methods, and assessed for a
water-resources system in South Korea, including water supply and conservation (WS),
flood control (FC) and water quality (WQ) sectors. These group MCDM methods were
applied to a sub-national (province) level of South Korea (Fig. 1).

2 Methods

Climate-change vulnerability was assessed using various group MCDMmethods as the steps
in the approach follows: (1) determine the key indicators (proxies) of IPCC-based

Fig. 1 Map of study area. South Korea includes 16 provinces of Seoul (A01), Busan (A02), Daegu (A03),
Incheon (A04), Gwangju (A05), Daejeon (A06), Ulsan (A07), Gyeonggi-do (A08), Gangwon-do (A09),
Chungcheongbuk-do (A10), Chungcheongnam-do (A11), Jeollabuk-do (A12), Jeollanam-do (A13),
Gyeongsangbuk-do (A14), Gyeongsangnam-do (A15) and Jeju-do (A16)
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vulnerability for each sector with a survey of expert groups, which is the first step of the
Delphi process; (2) as part of the Delphi process, determine the weights of key indicators
based on surveys of expert groups, then, collect data for the key indicators for all regions and
standardize the data; (3) quantify and rank vulnerability using the various group MCDM
techniques such as the WSM, TOPSIS, fuzzy-based TOPSIS, TOPSIS in a group decision
environment, and TOPSIS combined with the voting methods (Borda count and Copeland’s
methods); (4) analyze the resulting rankings with the Spearman rank correlation. See the
electronic supplementary material (ESM) for the details on the methods, including the
Delphi process, fuzzy set theory, MCDM techniques and Spearman rank correlation (see
Eqs. A1–A4, respectively; ESM).

2.1 Climate-change vulnerability framework and indicators

In this study, we used the IPCC-based vulnerability framework among various conceptual
frameworks. The vulnerability of any system at any scale reflects the exposure and sensi-
tivity of that system to hazardous conditions and the ability, capacity, or resilience of the
system to cope, adapt, or recover from the effects of those conditions. Climate exposure (E)
refers to a vast variety of climate-related stimuli such as a rise in sea level, temperature
changes, precipitation changes, heat waves, heavy rainstorms, and climatic droughts.
Sensitivity (S) is the degree to which a system is modified or affected by perturbations.
Adaptive capacity (AC) is the ability of a system to evolve to accommodate environmental
hazards or policy changes and to expand the range of variability with which it can cope
(Adger 2006). Mathematically, we defined vulnerability (V) as follows:

V ¼ α� E þ β � S− γ � AC ð1Þ

where α, β, and γ (α + β + γ = 1) are the weights for E, S and AC, respectively.
To assess E, S and AC of a system, key indicators or proxy variables that

quantify, measure, and communicate relevant information must be identified for use
in the assessment or model (Hamouda et al. 2009). These indicators should simplify
or summarize a number of important properties rather than focus on isolated char-
acteristics of the system. Indicators must be measurable, or at least observable, and
the methodology used to construct them should be transparent and understandable
(Seager 2001).

2.2 Multi-criteria decision making

Decision-making problem is the process of finding the best option from all of feasible
alternatives. In most cases, criteria for judging the alternatives are multiple, leading to
a MCDM problem. MCDM problems can be expressed with a decision (or perfor-
mance) matrix D with xij, indicating the performance rating of each alternative i (i=1,
…, m) and each criterion j (j=1, …, n); and a weighting vector W with wj, indicating
the weight for each criterion j. Also, the data for the decision matrix D come from
different sources, so it is necessary to normalize it to a dimensionless matrix. The
normalized performance matrix R=(rij)mxn was used to assess vulnerability with dif-
ferent MCDM methods (see Eq. A3.1 in the ESM).

MCDM problems involve various uncertainties such as uncertain weighting values for
proxy variables when there are influential stakeholders with different interests, and uncertain
crisp input data due to transformations of rough data into numerical values. The random or
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fuzzy nature of the available information is attributed to the inclusion of human judgments
and preferences in a problem formulation. After Bellman and Zadeh (1970) first introduced
the theory of fuzzy sets to the problem of MCDM as an effective approach to treat vagueness,
lack of knowledge and ambiguity inherent in the human decision, fuzzy set theory has been
applied extensively in MCDM processes (e.g., Zhou et al. 1999; Fu 2008). Among various
types of fuzzy representations, this study uses a triangular fuzzy number (TFN), for which a
fuzzy number is defined by three numbers a1 < a2 < a3 where the base of the triangle is in the
interval between a1 and a3 and the vertex is at a2. It is written as ea ¼ a1; a2; a3ð Þ (see Eq. A2 in
the ESM).

Furthermore, many decision-making problems are solved with a collaborative effort and
thus MCDM problems for a group-decision environment are not uncommon. In this study,
we assessed climate-change vulnerability based on surveys from a group of people to
quantify the relative importance of criteria for vulnerability. Among many different ap-
proaches to solve the MCDM problem, we chose to use six different MCDM methods,
including the WSM, the most commonly used MCDM, and various TOPSIS methods with
multiple decision makers (DMs; Table 1).

2.2.1 TOPSIS

The TOPSIS method was developed to solve MCDM problems in which preference
information is not articulated (Hwang and Yoon 1981). The technique is based on the
concept that the positive ideal solution (PIS) has the best values for all attributes, whereas
the negative ideal solution (NIS) is the alternative with all of the worst attribute values. A
TOPSIS solution is defined as the alternative that is simultaneously farthest from the NIS
and closest to the PIS (Chu 2002). Then the relative closeness (RC) based on the distances to
PIS and NIS is used to determine the preference for alternatives.

Mathematically, the TOPSIS procedure (see Eq. A3.2 in the ESM) can be summarized as
in the following. First, the weighted normalized value vij is determined with the product of

Table 1 Different MCDM methods used in this study

Method Description Crisp/fuzzy? Average/voting?

Ml WSM The weighted sum is estimated using the
averaged weight from individual DMs
and the averaged performance value

Crisp Average

M2 TOPSIS The relative preference defined by TOPSIS
is estimated using the averaged weight
from individual DMs and the averaged
performance value

Crisp Average

M3 Fuzzy TOPSIS The relative preference is estimated using
the fuzzified weights from individual DMs
and the fuzzified performance value

Fuzzy Average

M4 Group TOPSIS The relative preference is estimated with
internally integrating weights from
individual DMs

Crisp Average

M5 TOPSIS-Borda Borda counts are estimated after applying
TOPSIS for individual DMs (multiple TOPSIS
with the weights from individual DM)

Crisp Voting

M6 TOPSIS-Copeland Copeland’s counts are estimated after applying
TOPSIS for individual DMs

Crisp Voting
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multiplying the normalized performance value by the weighting value (vij=wj×rij). Next, PIS
(A+) and NIS (A–) are determined in that:

Aþ ¼ vþ1 ; v
þ
2 ;…; vþn

� �
& A− ¼ v−1 ; v

−
2 ;…; v−n

� �
vþ1 ¼ max

i
vij & v−j ¼ min

i
vij

ð2Þ

where using Euclidean distances of each alternative from PIS and NIS (di
+ and di

−,
respectively), RC for each alternative (RCi) is then calculated as follows:

RCi ¼ d −
i

dþi þ d −
i

ð3Þ

Extended from TOPSIS, fuzzy TOPSIS (see Eq. A3.3 in the ESM) solves problems of
decision making with uncertain data. Considering the fuzziness in the decision data,
linguistic variables are used to assess the weights of all criteria and normalized performance
ratings of each alternative with respect to each criterion.

Group TOPSIS (see Eq. A3.4 in the ESM), devised by Shih et al. (2007), extends
TOPSIS to a group-decision environment by internally aggregating individual DM’s pref-
erences, so that multiple preferences of more than one DM are integrated. TOPSIS procedure
is repeated for each DM, and then the geometric mean of distances to PIS and NIS for each
DM are taken.

2.2.2 TOPSIS with Borda count and Copeland methods

Group TOPSIS is intuitive and does not consider either preference levels or preference
priorities among alternatives for individual decision makers. With voting methods, the
TOPSIS procedure is repeated for individual DMs, and the consequent preferences (i.e.,
rankings) from individual DMs are aggregated for a collective decision-making environment
based on the voting methods, Borda count and Copeland methods. Similarly, Shih et al.
(2004) developed the group-decision support system, aggregating the DMs’ preferences
based on TOPSIS with Borda count method.

Borda count method is a technique that allows a voter to rank a set of candidates
(alternatives) by assigning different preferences to each alternative (Saari 1995). In a vote
with m alternatives, a score of m-1 will be assigned to the most favored candidate, a score of
m-2 to the second most favored candidate, and so on, with the least favored candidate
receiving a score of zero. These scores from DMs are summed up for each alternative, and
then the sum is ordered for a collective decision among DMs. In Copeland’s method, all
possible alternatives were paired for each DM and the number of pairwise victories and
defeats are summed up, respectively. Then their difference for each alternative is estimated
and ordered for a decision among DMs.

3 Case study of water resources in South Korea

3.1 Study domain

The vulnerability assessment methodology was applied to the water-resources system in
South Korea (Fig. 1), covering an area of 48,877 km2 with a population of almost 50
million. South Korea consists of 16 provincial-level divisions (see Table B1 in the
ESM). The capital of South Korea, Seoul (A01), has a population of about 10 million
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with the highest population density and gross regional domestic product (GRDP) of the 16
provinces. The province with the lowest population and GRDP is Jeju-do (A16), which is an
island and Korea’s southernmost province. In this study, the water-resource system is divided
into three sectors of (1) WS, (2) FC and (3) WQ based on the management purpose. By
employing multiple group MCDM methods, we evaluated the climate-change vulnerability
scores for these three sectors separately and then aggregated them into one integrated vulner-
ability score.

Note that NIER (2011) performed the vulnerability assessment of Korea for differ-
ent sectors including water resources (WS, FC and WQ), agriculture, health and so on
with WSM based on the climate and environmental data for present and future times
(see Eq. A5 in the ESM for data description). Following NIER (2011), Jun et al.
(2013) performed the flood vulnerability assessment with the fuzzy TOPSIS method,
and Kim and Chung (2013) showed the advantage of the fuzzy VIKOR, one of recent
MCDM approach for evaluating the climate-change vulnerability, using the water
supply in Korea as an example. Building from those studies, this study attempts to
assess the vulnerability of three sectors with the multiple group MCDM methods and
integrate the vulnerability of the three sectors into one. Differently from the previous
studies, this study shows only the present time vulnerability without the future
vulnerability using the climate-change scenarios, which will be published in a separate
paper later.

3.2 Vulnerability assessments

3.2.1 Identification of key indicators

This step is to identify key indicators of three water-resource sectors under the IPCC
vulnerability concept. After a series of discussions with researchers and governmental
officials, 24 key indicators for WS, FC and WQ were identified to quantify the
vulnerability. Because these variables were not determined objectively, they were
screened by experts (DMs for MCDM); the group of 11 experts, including hydrolo-
gists, water-resource managers, and climate-change experts participated in this step
regarding WS and FC, and the other group of 11 experts, including environmental
engineers, water-resource managers and climate-change experts, participated in regards
to WQ. If proxy variables were rejected by at least two respondents, they were
removed and consequently 24, 21, and 22 key indicators were determined for WS,
FC and WQ, respectively. This screening process is the first step of the Delphi
technique. Note that we followed the indicators of NIER (2011) for WS and FC,
but the indicators for WQ were newly determined in this study to better represent the
climate-change vulnerability in regard to water quality.

For WS (Table 2), the 24 proxy variables were included. For climate exposure,
variables representing seasonal variations in water availability such as precipitation
and evapotranspiration in winter and spring (dry season in South Korea), were
selected. Lower precipitation or higher evaportranspiration in winter and spring sug-
gest increased exposure to drought risks. Also the maximum of continuous non-rainy
days was chosen as it clearly represents the possibility of drought, and the under-
ground outflow was selected as it refers to water resources available during the dry
season. For sensitivity, proxy variables that influenced the probability of drought
damages were chosen, and for adaptive capacity, proxy variables representing socio-
economic capacity to cope with drought damages were selected. Proxy variables such
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as financial independence of local government from the national government, civil
servants per population, GRDP and number of civil servants related to water represent
the adaptive capacity of the water-resource systems and they were chosen for all three
including WS, FC and WQ.

For FC (Table 3), 21 out of 24 proxy variables were finally considered, and the 3
variables that were dropped after the first step of Delphi survey include average rainy days,
hourly maximum precipitation and precipitation frequency for climate exposure. The
dropped variables were considered to be irrelevant to flood risks or redundant given other
proxy variables. The proxy variables for climate exposure include variables related to
precipitation intensity, including daily maximum precipitation and days with heavy precip-
itation, as they directly influence flood occurrence. For sensitivity, the proxy variables were

Table 2 List of vulnerability components and key indicators for WS. In the third column (Relation to
vulnerability), the positive (negative) signs mean that the higher the indicator, the higher (lower) the
vulnerability

Vulnerability components (VC) or key indicators

Names [units] Labels Relation to
vulnerability

Average
weights

Climate exposure E + 0.35

The maximum of continuous non-rainy days [days] Cl + 0.22

Winter (Dec, Jan and Feb; DJF) precipitation [mm] C2 − 0.18

Spring (Mar, Apr and May; MAM) precipitation [mm] C3 − 0.21

Winter (DJF) evapotranspiration [mm] C4 + 0.10

Spring (MAM) evapotranspiration [mm] C5 + 0.13

Underground outflow [mm] C6 − 0.15

Sensitivity S + 0.29

Population density [persons/km2] C7 + 0.11

Total population [persons] C8 + 0.10

Water supply [liter/person/day] C9 + 0.07

Grain production per area [ton/km2] C10 + 0.07

Livestock production per area [km2] C11 + 0.06

Groundwater usage [m3/year] C12 + 0.08

River usage [m3/year] C13 + 0.09

Household water consumption [l03 m3/year] C14 + 0.15

Industrial water usage [103 m3/year] C15 + 0.14

Agriculture water usage [103 m3/year] C16 + 0.13

Adaptive capacity AC − 0.36

Financial independence of local government from the national
government [%]

C17 − 0.12

Civil servants per population [persons/104 people] C18 − 0.05

GRDP [106 Korean Won] C19 − 0.09

Number of civil servants related to water [persons] C20 − 0.09

Percent of populations accessible to water-supply system [%] C21 − 0.15

Groundwater capacity [103 m3/year] C22 − 0.14

Reservoir for water supply capacity per area[103 m3] C23 − 0.21

Recycled water usage per area [103 ton/year] C24 − 0.15
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related to the probability of flood damage. Increases in low-lying areas and households
significantly tend to increase the flood risk, while decreases in the areal ratio with the
riverbanks tend to decrease the risk. The socio-economic aspects for coping with flood
damage were selected for adaptive capacity.

For WQ (Table 4), 22 proxy variables were included. Maximum of continuous rainy days
for climate exposure and length of road per area for sensitivity were dropped as similar
proxy variables were selected. For climate exposure, variables related to both temperature
and precipitation intensity were chosen as many environmental phenomena such as heat
waves, droughts and floods could potentially cause water-quality problems. For sensitivity,
the proxy variables were related to the probability of water-quality deterioration, mainly
including variables representing the pollutant sources and transports. Except for forest area
ratio, all proxies for sensitivity were positively related to vulnerability. The forested area
tends to minimize surface runoff, soil erosion and, thus, sediment transport, tending to lead
the system in resilience to climate change and variability. For adaptive capacity, the proxy
variables include variables related to the socio-economic aspects for coping with water-
quality problems such as the sewerage distribution ratio.

Table 3 The same with Table 2 but for FC

Vulnerability components (VC) or key indicators

Names [units] Labels Relation to
vulnerability

Average
weights

Climate exposure E + 0.39

Daily maximum precipitation [mm] C1 − 0.31

Days with heavy rainfall (over 80 mm/day) [day] C2 + 0.23

Maximum rainfall of 5 days period [mm/5 days] C3 + 0.19

Surface runoff [mm/day] C4 + 0.16

Summer (i.e., June, July, August and September; JJAS) Precipitation [nm] C5 + 0.11

Sensitivity S + 0.27

Population density [persons/km2] C6 + 0.10

Total population [persons] C7 + 0.10

Low-lying area of less than 10 m [km2] C8 + 0.07

Low-lying household of less than 10 m [# of households] C9 + 0.12

Area ratio of the riverbanks [%] C10 − 0.10

Regional average slope [degree] C11 + 0.11

Percent of road area per total area [%] C12 + 0.07

Flood damage cost (last three years) [103 Korean Won] C13 + 0.16

Flood damage population (last three years) [103 Korean Won] C14 + 0.15

Adaptive Capacity AC − 0.34

Financial Independence of local government from the national
government [%]

C15 − 0.13

Civil servants per population [persons/104 people] C16 − 0.07

GRDP [106 Korean Won] C17 − 0.11

Number of civil servants related to water [persons] C18 − 0.13

River improvement rate [%] C19 − 0.14

Capacity of drainage facilities [m3/mm] C20 − 0.21

Flood control ability of reservoirs [106 m3] C21 − 0.21
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3.2.2 Construction of performance matrix

To construct the performance matrix (see Eq. A5 in the ESM), data for the key indicators
were obtained from NIER, Statistics Korea, the National Institute of Disaster Management
Institute and GIS analyses at the district level for the 232 districts in the 16 provinces, as
detailed in the ESM (see Eq. A5 therein).

All of the key indicators’ performance values for the 232 districts were normalized after
log-transformation, if necessary, and then either averaged or fuzzified. Here log-
transformation was performed for the variables whose raw data include the extreme value
far from the rest of data. For each indicator in each province, the values for a1 and a3 in the
TFN (see Eqs. A1 and A2 in the ESM) were determined by the minimum and maximum
values from the districts belonging to the province, respectively; the value of a2 in the TFN
was determined by the representative value of the bin, showing the highest probability in the
3-bin histogram based on district-level values. If a province had the same value for all of the

Table 4 The same with Table 2 but for WQ

Vulnerability components (VC) or key indicators

Names [units] Labels Relation to
vulnerability

Average
weights

Climate exposure E + 0.32

Maximum temperature [°C] Cl + 0.14

Daily maximum precipitation [mm] C2 + 0.13

Days with heavy precipitation (over 80 mm/day) [day] C3 + 0.14

The maximum of continuous non-rainy days [day] C4 + 0.32

The number of days above 33°C of daily maximum temperature [#] C5 + 0.15

The number of days above 25°C of daily minimum temperature [#] C6 + 0.12

Sensitivity S + 0.34

Population density [persons/km2] C7 + 0.07

Regional average slope [degree] C8 + 0.07

Percentage of road area [%] C9 + 0.11

Population engaged in livestock [persons] C10 + 0.08

Livestock production status [heads/km2] C11 + 0.13

Fertilizer usage per cultivated area [ton/ha] C12 + 0.14

Distribution of major animal species [# of species] C13 + 0.07

Distribution of major plant species [# of species] C14 + 0.08

Forest area ratio [%] C15 − 0.12

Percentage of land managed [%] C16 + 0.12

Adaptive capacity AC − 0.35

Financial independence of local government from the national
government [%]

C17 − 0.13

Civil servants per population [persons/104 people] C18 − 0.13

GRDP [106 Korean Won] C19 − 0.16

Number of civil servants related to water [persons] C20 − 0.14

Sewerage distribution ratio [%] C21 − 0.29

River improvement rate [%] C22 − 0.15
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districts for a certain indicator, one value was used for the TFN, meaning that a1, a2 and a3
were the same. In this way, geographic heterogeneity within the province is represented with
the TFN as in Fig. C1a in the ESM with the example of population density. While the
averaged number (blue line) represent one value, the TFN (red lines) represent a wide range
of possible values of the indicator.

3.2.3 Determination of weights

Like the 2nd and 3rd steps of the Delphi technique, the weighting factors for key indicators
and vulnerability components (i.e., E, S and AC in Eq. 1) were determined through two
individual surveys, which were conducted to reduce the variability of the weighting values
determined by the expert group (NIER 2011). Tables B2, B3, and B4 of the ESM show the
resulting weighting factors from 11 experts and their minimum, maximum and average for
each indicator. Distributions of weights for each indicator (figures not shown) show variable
patterns; in many cases, weights tend to distribute around the mode as we intended, but in
other cases weights tend to split into two extremes.

The weights from the 11 experts were averaged, fuzzified or used as is, according to the
group MCDM methods. TFNs can represent different opinions regarding the relative
importance of different components. For weights for the criteria, the values for a1 and a3
in the TFN (see Eq. A1 in the ESM) were determined by the minimum and maximum values
of weights from different experts, respectively. TFNs of weights for WS, FC and WQ are
presented in Table B6 of the ESM, and the TFNs of weights for population density (C7) in
WS are presented, for example, in Figure C1b in the ESM.

Furthermore, we conducted an additional survey with 9 experts, including water-resource
managers, environmental scientists and climate-change scientists, to determine the relative
weights among WS, FC and WQ and aggregate the three vulnerability scores (see Table B5
in the ESM). Note that this survey could also have been a part of the afore-mentioned Delphi
processes, but the survey was only designed after the earlier surveys determining the key
indicators and their weights (NIER 2011). Then, the weights from the nine experts were
averaged to aggregate the vulnerability scores from the three different sectors using the
WSM.

3.2.4 Application of different group MCDM methods

Using six different MCDM methods, we estimated and ordered vulnerability scores
for sixteen provinces (Table 4). The sectoral vulnerability scores for WS, FC and WQ
were then integrated into one composite score and ranking using WSM. In the
following, the MCDM procedure is explained along with the example of fuzzy
TOPSIS for WS (Method 3).

After normalizing the fuzzy performance matrix, the fuzzy weights were multiplied to
derive the weighted normalized performance matrix (step 1 of Eq. A3.3 in the ESM), which
allows us to determine the FPIS and FNIS (step 2). As the size of the normalized fuzzy
performance matrix is 16 by 72, the normalized fuzzy performance only for the criteria of
population density (C7 for water supply) is provided in (a) of Table B7 in the ESM. Its
weighted version as well as FPIS and FNIS for population density are shown in (b) of
Table B7 in the ESM. Then, the Euclidean distances from FPIS and FNIS of all criteria were
calculated and then summed up for each province (step 3, (c) of Table B7 in the ESM).
Finally the relative closeness with respect to FPIS (i.e., separation measure) was derived for
each province and ranked (step 4 in Table B8 of the ESM).
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For the voting-based approaches, the TOPSIS procedure is repeated for each DM before
applying the voting methods (see Table B9 in the ESM). For Borda count, a score of 16 was
assigned to the most vulnerable province, a score of 15 to the second most vulnerable
province, and so on, and then scores for each province are summed up in Table B10 of
the ESM. In Copeland’s method, each province was matched against every other province in
a series of imaginary one-on-one contests. In each pairing, wins and losses for each DM
were counted. These pairwise wins and losses were summed up and their differences were
calculated for the final ranking as in Table B11 of the ESM.

3.3 Results analysis

3.3.1 Comparison among MCDM methods

We examined how largely vulnerability depended on different group MCDM methods,
aiming to understand uncertainties associated with the methods. Vulnerability rankings with
different MCDM methods were associated with each other in different degrees with rank
correlations averaged along different sectors, ranging from 0.61 to 0.99 (see Table B12 of
the ESM). In particular, the fuzzy TOPSIS showed relatively low correlations with other
non-fuzzy MCDM methods, which are all based on averaging or voting. As shown in
Figure C1 of the ESM1, the fuzzy representation lent significantly different weights and
performance values to the MCDM approaches. Voting-based TOPSIS presented good rank
correlations with averaged-based (non-voting based TOPSIS) methods.

According to the final rankings of provinces, the provinces ranked as the top to the thirdwere
considered the vulnerable group and the provinces ranked as the bottom to the third from the
bottom (i.e., 14th, 15th and 16th) were considered the resilient group. As shown in Table 5,
rankings with the different MCDM methods show a relatively good agreement for the vulner-
able and resilient groups, which are important to be identified for prioritizing adaptation
practices, and a relatively poor agreement for the mid-ranking provinces (Table 5).

For WS, the vulnerable group identified by the different MCDM methods is quite
consistent except for A14 (Gyeongsangbuk-do). While A14 belongs to the vulnerable group
based on fuzzy TOPSIS, all other methods suggest it as the resilient group. For FC, the
vulnerable group and the specific rankings of provinces in the group are consistent along the
different MCDM methods. For WQ, the vulnerable group is identified a little differently
according to the different methods but all methods point out A01 (Seoul) as belonging to the
vulnerable group.

In general, rankings among the different MCDM methods varied from one to another by
different degrees. Results from the rank correlations showed relatively poor associations
between rankings from fuzzy-based and non-fuzzy-based methods, which suggested that the
uncertainty with crisp data should be acknowledged in vulnerability assessment, but rela-
tively good associations exist between rankings from voting-based and average-based
methods. One province identified as one of the most vulnerable provinces, requiring urgent
adaptation policies, with one MCDM method could be ignored with the other methods, but
mostly top-ranked and bottom-ranked provinces were very similar with all MCDMmethods.

3.3.2 Comparison among sectors and integrated vulnerability

Vulnerability rankings varied with the sectors of the water-resource system, but sectoral
vulnerability scores were further integrated into one single score because policy makers
often require simple information and water resources that could be viewed as a whole
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regardless of management purposes. Rank correlations between different sections range
from 0.30 between WQ and WS to 0.03 between WQ and FC (see Table B12 in
the ESM), suggesting little associations among different sectors of water-resources system.
Also rank correlations between the integrated and sectoral rankings for WS, FC and WQ
were 0.43, 0.87 and 0.36, respectively, as expected, based on their weights (0.27 for WS,
0.49 for FC and 0.24 for WQ).

Examining the specific rankings in Table 5, A02 (Busan), A07 (Ulsan) and A16 (Jeju-do)
were identified as being in the vulnerable group based on the integrated score, which is the
same with FC. Regardless of the MCDM methods, A01 (Seoul) belongs to the resilient
group for FC but the vulnerable group for WQ. Based on the integrated score, A01 belongs
to the resilient group with the three MCDM methods of TOPSIS, fuzzy TOPSIS and group
TOPSIS. Floods are weakly linked to droughts and water quality and thus critical informa-
tion disappears when aggregating these three aspects. Here we note that floods can cause
water-quality problems although major climatic drivers for water-quality problems are high
temperature and droughts (Table 4). This finding calls for caution when using a composite
index, which is very convenient and provides a simple format of information but often hides
specific details.

4 Conclusions and discussions

This study developed an approach to assess climate-change vulnerability using various
group MCDM methods and identified the sources of uncertainty in assessments. We used
six different group MCDM methods. Assessments were carried out for the South Korean
water-resource system, categorized into the sectors of WS, FC and WQ. The sectoral
vulnerability scores were further aggregated into one composite score for water-resource
vulnerability.

The rank correlations among the different group MCDM methods corresponded to
different degrees, but obvious differences in rankings between the fuzzy-based and
non-fuzzy-based methods suggested that the uncertainty with crisp data, which are
rather widely used, should be acknowledged in vulnerability assessment. However, we
also found relatively good associations between rankings from voting-based and
average-based methods. Vulnerability rankings varied significantly with the sectors
of the water-resource system. From a flood control perspective, Seoul (A01) is the
least vulnerable province across all MCDM methods but it is among the most
vulnerable in terms of water quality. It highlights the need to assess the vulnerability
of water-resource systems according to objectives, although one composite index is
often used for simplicity.

This study focused on the uncertainty of vulnerability with different group decision-
making approaches with the present time data only. As already pointed out, this study was of
the climate-change vulnerability approach for not only the present time but also the future
based on the climate-change scenarios generated by any general circulation models and
regional climate models. Changes in vulnerability along different time periods and different
climate-change scenarios will be explored further in detail.

Eriksen and Kelly (2007) noted that the fundamental scale of vulnerability is local,
although processes operating at broader spatial scales contribute to patterns of vulnerability.
Indeed, this study focused on vulnerability at the province level, while vulnerability occurs
at the local level; therefore, further investigations are necessary regarding the specific causes
of vulnerability at the local level in the provinces that are identified as vulnerable.
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