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Chapter 1: What is Econometrics-What it is all about? 

 

Definition, Scope and Division of Econometrics 

1.1. Definition and Scope of Econometrics 

Econometrics deals with the measurement of economic relationships. Econometrics is a 

combination of economic theory, mathematical economics, and statistics, but it is completely 

distinct from each of them. 

Econometrics may be defined as the social science in which the tools of economic theory, 

mathematics, and statistical inference are applied to the analysis of economic phenomena.  

Thus econometrics may be considered as the integration of economics, mathematics and statistics 

for the purpose of providing numerical values for the parameters of economic relationships e.g. 

elasticities, propensities, etc…. 

Econometric methods are statistical methods specifically adapted to the peculiarities of economic 

phenomenon. The most important characteristics of economic relationships are that they contain a 

random element. This random element is ignored by economic theory and mathematical 

economics that postulate exact relationships between various economic magnitudes. Econometrics 

has developed methods for dealing with the random component of economic relationships. 

Example 

Economic theory postulates that the demand for a commodity depends on its price, on the prices 

of other commodities, on consumer’s income, and its tastes. This is an exact relationship because 

it implies that demand is completely determined by the above four factors. No other factor except 

that above influences demand. 

▪ In mathematical terms this is expressed as: 

 

 

Where,     Q = Quantity demanded of a particular commodity 

                 P = Price of the commodity 

                 PO = Prices of other commodities 

                 Y = Consumers income 

                 t = Tastes 
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                 b0,b1,b2,b3,b4  = Coefficients of the demand function 

The above equation states that it is only the four factors that affect the quantity demanded of a 

commodity. However, in economic life many factors may affect demand. For instance, 

expectations, the invention of a new product, a war, professional changes, changes in law, etc. 

In econometrics the influence of these “other” factors is taken into account. A random variable 

with specific characteristics is introduced into the economic relationships. To our model in the 

above equation, we add u for random factors that affect quantity demanded. 

 

U = stands for random factors that affect quantity demanded. 

Econometrics presupposes the existence of a body of economic theory. Economic theory should 

come first because it sets the hypotheses about economic behavior that should be tested with the 

application of econometric techniques. 

 In testing hypotheses: 

a) Formulate the mathematical relation that constitutes the model of the maintained 

hypothesis. 

b) Confront the model with observational data referring to the actual behavior of the economic 

units (i.e. consumers or producers). 

➢ Test the validity of the hypotheses (by collecting and analyzing data using 

appropriate statistical techniques). 

• This is done to establish whether the theory can explain the actual behavior of the economic 

units. 

That is whether the theory is compatible with facts. If the theory is compatible with the actual data, 

we accept the theory as valid. If the theory is incompatible with the observed behavior: We either 

reject the theory, or in the light of the empirical evidence of the data, we may modify it. In the 

second case one needs additional new observations in order to test the revised version of the theory. 

1.1.1. Econometrics and Mathematical Economics 

Mathematical economics states economic theory in terms of mathematical symbols. There is no 

difference between mathematical economics and economic theory. Both state the same 

relationship. Economic theory makes statements or hypotheses that are mostly qualitative in 

nature (the theory uses verbal expression).  E.g. the law of demand, the law does not provide any 

numerical measure of the relationship. This is the job of the econometrician. Both express the 

various economic relationships in an exact form. Neither economic theory nor mathematical 
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economics allows for random elements. These random elements might affect the relationship and 

make it stochastic. They do not provide numerical values for the coefficients of the relationships. 

Econometrics presupposes the expression of economic relationships in mathematical form. But it 

does not assume that economic relationships are exact. Econometric methods provide numerical 

values of the coefficients of economic phenomena. 

1.1.2. Econometrics and Statistics 

Econometrics differs both from mathematical statistics and economic statistics. An economic 

statistician gathers empirical data, records them, tabulates them or charts them, and attempts to 

describe the pattern in their development over time and perhaps detect some relationship between 

various economic magnitudes. It does not go any further. The one who does that is the 

econometrician. Mathematical (or inferential) statistics deals with the methods of measurement, 

which are developed on the basis of controlled experiments in the laboratories. Statistical methods 

of measurement are not appropriate for economic relationships which cannot be measured on the 

basis of evidence provided by controlled experiments, because such experiments cannot be 

designed for economic phenomenon. 

For instance, in physics and some other sciences the researcher can hold all other conditions 

constant and change only one element in performing an experiment. Example: A plant 

scientist/Agronomist can measure the impact of fertilizer on wheat productivity by keeping the 

use of improved seeds constant. Or he can measure the impact of improved wheat variety on the 

productivity of wheat by keeping the utilization of fertilizers constant. 

He can then record the results of such change and apply the classical methods to deduce the laws 

governing the phenomenon being investigated. However, in studying the economic behavior of 

human beings one cannot change only one factor while keeping all other factors constant. In the 

real world, all variables change continuously and simultaneously, so that controlled experiments 

are impossible.  

We cannot change only incomes, keeping prices, tastes and other factors constant. Econometrics 

uses statistical methods after adopting them to the problems of economic life. These adopted 

statistical methods are called econometric methods. This means econometric methods are adjusted 

so that they become appropriate for the measurement of economic relationships that are stochastic, 

that is they include random elements. The adjustment consists primarily in specifying the 

stochastic (random) element that are supposed to operate  in the real world and enter into the 

determination of the observed data, so that the latter can be interpreted as a (random) sample to 

which the methods of statistics can be applied. 

1.2. Goals of Econometrics 

There are about three main goals of econometrics. 
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a) First, econometrics is used for the analysis of theory. Testing economic theory. 

Example: Educated household heads are more likely to adopt new technologies than 

others. Males are less likely to repay their debts than females. 

b) Second, econometrics is used for policy making. That is supplying numerical estimates of 

the coefficients of economic relationships, which may be used for decision-making. 

Examples 

➢  Price elasticity of demand for Injera is 0.5. What advise need to be given for 

producers/suppliers? Should the supplier increase or decrease the price of Injera? 

➢ Price elasticity of demand for Beer is 1.5. What advise need to be given for 

producers/suppliers? Should the supplier increase or decrease the price of Beer? 

c) Third, econometrics is used for forecasting. 

1.2.1. Analysis: Testing Economic Theory 

In earlier stages of the development of economic theory, economists formulated the basic 

principles of the functioning of economic systems using verbal exposition and applying deductive 

procedures. Earlier economic theories started from a set of observations concerning the behavior 

of individuals as consumers and producers. Some assumptions were set regarding the motivation 

of individual units. 

For instance, in demand theory it was assumed that consumers maximize utility and in supply 

theory producers were assumed to maximize profit. By logical reasoning, economists were able to 

derive some logical conclusions (laws) concerning the working processes of the economic system. 

However, no attempt was made to test the theories against reality. Econometrics aims primarily at 

the verification of economic theories. This means obtaining empirical evidence to test the 

explanatory power of economic theories, to decide how well they explain the observed behavior 

of the economic units. 

1.2.2. Policy Making (Decision Making) 

Various econometric techniques are used to obtain reliable estimates of the individual coefficients 

of economic relationships. From these values one evaluate parameters of economic relationships 

such as elasticities, propensities, marginal values, multipliers, etc… 

1.2.3. Forecasting the future value of economic magnitudes 

Forecasting the values of economic magnitudes is essential for policy makers to judge whether it 

is necessary to take any measure in order to influence the relevant economic variable. For example, 

the government may be interested in knowing the level of unemployment after five years. 
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1.3. Methodology of Econometrics 

Broadly speaking, traditional econometric methodology proceeds along the following lines: 

1. Statement of theory or hypothesis. 

2. Specification of the mathematical model of the theory 

3. Specification of the statistical, or econometric, model 

4. Collecting the data 

5. Estimation of the parameters of the econometric model 

6. Hypothesis testing 

7. Forecasting or prediction 

8. Using the model for control or policy purposes 

To illustrate the preceding steps, let us consider the well-known Keynesian theory of 

consumption. 

1. Statement of Theory or Hypothesis 

Keynes states that on average, consumers increase their consumption as their income increases, 

but not as much as the increase in their income (MPC < 1). 

Formulation of the maintained hypothesis  

It involves determining 

a. Dependent and explanatory variables 

b. The a priori theoretical expectations about the signs & the size of the parameters of the 

function to form the basis for the evaluation of the model 

c. The mathematical form of the model: single vs. simultaneous equation; linear vs. nonlinear 

functional forms 

2. Specification of the Mathematical Model of Consumption (single-equation model) 

Y = β1 + β2X              0 < β2 < 1      (1.3.1) 

Y = consumption expenditure and  (dependent variable) 

X = income, (independent, or explanatory variable) 
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β1 = the intercept  

β2 = the slope coefficient  

• The slope coefficient β2 measures the MPC.  

 

3. Specification of the Econometric Model of Consumption 

The relationships between economic variables are generally inexact. In addition to income, 

other variables affect consumption expenditure. For example, size of family, ages of the 

members in the family, family religion, etc., are likely to exert some influence on 

consumption. To allow for the inexact relationships between economic variables, the above 

equation (I.3.1 ) is modified as follows: 

• Y = β1 + β2X + u      (1.3.2) 

Where u, known as the disturbance, or error, term, is a random (stochastic) variable that has 

well-defined probabilistic properties. The disturbance term u may well represent all those factors 

that affect consumption but are not taken into account explicitly. 

(I.3.2) is an example of a linear regression model, i.e., it hypothesizes that Y is linearly related to 

X, but that the relationship between the two is not exact. It is subject to individual variation. The 

econometric model of (I.3.2) can be depicted as shown in Figure I.2. 
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▪ In the above figure, it is observed that, 

➢ There are 11 household heads 

➢ A positive relationship between the two variables 

➢ U represents the difference between the actual expenditure which is represented by 

( dots) and the regression line (predicted values) 

4. Obtaining Data 

To obtain the numerical values of β1 and β2, we need data. 

Look at Table 1, which relate to the personal consumption expenditure (PCE) and the gross 

domestic product (GDP). 

• The data are in “real” terms. 

 

 

Table 1 
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5. Estimation of the Econometric Model 

Regression analysis is the main tool used to obtain the estimates. Using this technique and the 

data given in Table 1, we obtain the following estimates of  

➢   β1  = −184.08 and 

➢   β2, = 0.7064.  

Thus, the estimated consumption function is: 

                                                                     (I.3.3) 

 

The estimated regression line is shown in Figure I.3. The regression line fits the data quite well. 

The slope coefficient (i.e., the MPC) was about 0.70. An increase in real income of 1 dollar led, 

on average, to an increase of about 70 cents in real consumption.  

6. Hypothesis Testing 

iXY 7064.008.184 +−=

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That is to find out whether the estimates obtained in, Eq. (I.3.3) are in accord with the 

expectations of the theory that is being tested. Keynes expected the MPC to be positive but 

less than 1. In our example we found the MPC to be about 0.70.  But before we accept this 

finding as confirmation of Keynesian consumption theory, we must enquire whether this 

estimate is sufficiently below unity. In other words, is 0.70 statistically less than 1? If it is, it 

may support Keynes’ theory. Such confirmation or refutation of economic theories on the basis 

of sample evidence is based on a branch of statistical theory known as statistical inference 

(hypothesis testing).  

7. Forecasting or Prediction 

To illustrate, suppose we want to predict the mean consumption expenditure for 1997. The GDP 

value for 1997 was 7269.8 billion dollars consumption would be: 

                                                                                                                                     (I.3.4) 

The actual value of the consumption expenditure reported in 1997 was 4913.5 billion dollars. The 

estimated model (I.3.3) thus over-predicted the actual consumption expenditure by about 37.82 

billion dollars. We could say the forecast error is about 37.8 billion dollars, which is about 0.76 

percent of the actual GDP value for 1997. 

Now suppose the government decides to propose a reduction in the income tax. What will be the 

effect of such a policy on income and thereby on consumption expenditure and ultimately on 

employment? 

Suppose that, as a result of the proposed policy change, investment expenditure increases.  What 

will be the effect on the economy?  As macroeconomic theory shows, the change in income 

following, a dollar’s worth of change in investment expenditure is given by the income multiplier 

M, which is defined as:                          

                                                     (I.3.5) 

The multiplier is about      M = 3.33. 

That is, an increase (decrease) of a dollar in investment will eventually lead to more than a 

threefold increase (decrease) in income.  Note that it takes time for the multiplier to work. The 

critical value in this computation is MPC.  

Thus, a quantitative estimate of MPC provides valuable information for policy purposes.  

Knowing MPC, one can predict the future course of income, consumption expenditure, and 

employment following a change in the government’s fiscal policies. 

8. Use of the Model for Control or Policy Purposes 

( ) 30.495181.72697064.00779.184
1997

=+−=



Y

MPC
M

−
=

1

1
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Suppose we have the estimated consumption function given in (I.3.3). Suppose further the 

government believes that consumer expenditure of about 4900 will keep the unemployment rate 

at its current level of about 4.2%. What level of income will guarantee the target amount of 

consumption expenditure? If the regression results given in (I.3.3) seem reasonable, simple 

arithmetic will show that:  

  4900 = −184.0779 + 0.7064X   (I.3.6) 

Which gives X = 7197, approximately. That is, an income level of about 7197 (billion) dollars, 

given an MPC of about 0.70, will produce an expenditure of about 4900 billion dollars. As these 

calculations suggest, an estimated model may be used for control, or policy, purposes. By 

appropriate fiscal and monetary policy mix, the government can manipulate the control variable 

X (income) to produce the desired level of the target variable Y (consumption). 

Figure I.4 summarizes the anatomy of classical econometric modeling 
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1.4. Elements of Econometrics 

➢ Econometric inputs: 

✓ Economic Theory 

✓ Mathematics 

✓ Statistical Theory 

✓ Data 

✓ Computers (CPU power) 

✓ Interpretation 

➢ Econometric outputs: 

✓ Estimation – Measurement 

✓ Inference - Hypothesis testing 

✓ Forecasting – Prediction 

✓ Evaluation 

1.5. Types of Econometrics 

Econometrics may be classified in two branches as theoretical econometrics and applied 

econometrics. 

a) Theoretical econometrics 

It includes the development o appropriate methods for the measurement of economic relationships. 

These econometric methods may further be classified into two as single and simultaneous equation 

techniques. 

1) Single-equation techniques: are methods that are applied to one relationship at a time. 

2) Simultaneous-equation techniques: are methods applied to all the relationships of the 

model simultaneously. 

b) Applied econometrics 

It includes the application of econometric methods to specific branches of economic theory. 

It examines the problems encountered and the findings of applied research in the fields of: demand, 

supply, production, investment, consumption, and other sectors of the economy. Applied 
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econometrics involves the application of the tools of theoretical econometrics for the analysis of 

economic phenomena and forecasting economic behavior.  

Chapter 2. Correlation Theory 

 

Key concepts: 

   

• Types of correlation   

   

• Methods of studying correlation 

  

a.  Scatter diagram 

b. Karl pearson’s coefficient of correlation 

c. Spearman’s Rank correlation coefficient 

 

2.1. Basic Concepts of Correlation 

 

Correlation: The degree of relationship between the variables under consideration is measured 

through the correlation analysis. The measure of correlation is called the correlation coefficient. 

The degree (strength) of relationship is expressed by the coefficient which ranges from correlation 

(-1 ≤ r ≤ +1). The direction of change is indicated by a sign. 

 

The correlation analysis enables us to have an idea about the degree & direction of the relationship 

between the two variables under study. Correlation is a statistical tool that helps to measure and 

analyse the degree of relationship between two variables. Correlation analysis deals with the 

association between two or more variables.The linear correlation coefficient r measures the 

strength of the linear relationship between paired x- and y- quantitative values in a sample.   

 

What are correlation and causation and how are they different? 

 

Two or more variables considered to be related, in a statistical context, if their values change so 

that as the value of one variable increases or decreases so does the value of the other variable 

(although it may be in the opposite direction). For example, for the two variables "hours worked" 

and "income earned" there is a relationship between the two if the increase in hours worked is 

associated with an increase in income earned. If we consider the two variables "price" and 

"purchasing power", as the price of goods increases a person's ability to buy these goods decreases 

(assuming a constant income). 
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Correlation is a statistical measure (expressed as a number) that describes the size and direction 

of a relationship between two or more variables. A correlation between variables, however, does 

not automatically mean that the change in one variable is the cause of the change in the values of 

the other variable. 

Causation indicates that one event is the result of the occurrence of the other event; i.e. there is a 

causal relationship between the two events. This is also referred to as cause and effect.  

 

Theoretically, the difference between the two types of relationships are easy to identify-an action 

or occurrence can cause another (e.g. smoking causes an increase in the risk of developing lung 

cancer), or it can correlate with another (e.g. smoking is correlated with alcoholism, but it does not 

cause alcoholism). In practice, however, it remains difficult to clearly establish cause and effect, 

compared with establishing correlation. 

 

Types of Correlation: Type I 

 

▪ Correlation (Positive and negative) 

 

Positive Correlation: The correlation is said to be positive correlation if the values of two 

variables changing with same direction. Example: Price and quantity supplied. 

 

Negative Correlation: The correlation is said to be negative correlation when the values of 

variables change with opposite direction. Example: Price and quantity demanded. 

 

Direction of the Correlation  

 

Positive relationship: Variables change in the same direction. As X is increasing, Y is increasing. 

As X is decreasing, Y is decreasing. Example: As height increases, so does weight. 

Negative relationship: Variables change in opposite directions. As X is increasing, Y is 

decreasing. As X is decreasing, Y is increasing. Example:  As TV time increases, grades decrease. 

Indicated by sign; (+) or (-) 

More examples. Positive relationships: Water consumption and temperature, study time and 

grades. Negative relationships: Alcohol consumption and driving ability. 

 

Types of Correlation: Type II 

 

▪ Correlation (simple and multiple) 

▪ Multiple (partial and total) 

 

a. Simple correlation: Under simple correlation problem only two variables are studied. 



15 

 

b. Multiple correlations: Under Multiple Correlation three or more than three variables are 

studied. 

Example: Quantity demanded = f (Price, Price of other goods, expectations, taxes on and 

subsidies to consumers).  

Partial correlation: analysis recognizes more than two variables but considers only two variables 

keeping the others constant. Total correlation is based on all the relevant variables, which is 

normally not feasible. 

 

Types of Correlation: Type III 

 

Correlation (linear and non-linear) 

Linear correlation: Correlation is said to be linear when the amount of change in one variable 

tends to bear a constant ratio to the amount of change in the other. The graph of the variables 

having a linear relationship will form a straight line. 

          

Example:  X = 1,   2,   3,   4,   5,   6,   7,   8,   

                  

                  Y = 5,   7,   9, 11, 13, 15, 17, 19,  

                

                  Y = 3 + 2x 

Non Linear correlation: The correlation would be non-linear if the amount of change in one 

variable does not bear a constant ratio to the amount of change in the other variable.  

 

2.2. Coefficient of Linear Correlation 

 

Methods of Studying Correlation: Scatter diagram method, graphic method, Karl Pearson’s 

coefficient of correlation, and Spearman’s Rank coefficient of correlation. 

 

A. Scatter Diagram Method 

 

Scatter Diagram is a graph of observed plotted points where each point represents the values of X 

and Y as a coordinate. It portrays the relationship between these two variables graphically. 
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Advantages of Scatter Diagram 

 

It is simple and non-mathematical method, not influenced by the size of extreme item (outliers) 

and it is the first step in investing the relationship between two variables. 

  

  Disadvantage of scatter diagram: It cannot adopt an exact degree of correlation. 

 

B. Karl Pearson‘s Coefficient of Correlation 

 

Pearson’s ‘r’ is the most common correlation coefficient. Karl Pearson’s coefficient of correlation 

is denoted by ‘r’. The coefficient of correlation measures the degree of linear relationship between 

two variables say X and Y. Karl Pearson’s Coefficient of Correlation is denoted by ‘r’ -1 ≤ r ≤ +1. 

Degree of correlation is expressed by the value of the coefficient. Direction of change is indicated 

by the sign (- ve) or (+ ve). 

 

 
 

Notation for the Linear Correlation Coefficient 

 

n   represents the number of pairs of data present. 

 denotes the addition of the items indicated. 

 x  denotes the sum of all x-values. 

2

 x  indicates that each x-value should be squared and then    those squares added. 

( x ) 2 indicates that the x-values should be added and the total then squared. 

 xy  indicates that each x-value should be first multiplied by its corresponding y-value.   

• After obtaining all such products,   find their sum. 

r   represents linear correlation coefficient for a sample. 

  represents linear correlation coefficient for a population. 
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Procedure for computing the correlation coefficient 

• Calculate the mean of the two series ‘x’ &’y’ 

• Calculate the deviations ‘x’ &’y’ in two series from their respective mean.  

• Square each deviation of ‘x’ &’y’ then obtain the sum of the squared deviation i.e.∑x2 and 

∑y2  

 

• Multiply each deviation under x with each deviation under y and obtain the product of ‘xy’. 

• Then obtain the sum of the product of x , y i.e. ∑xy  

• Substitute the value in the formula. 

Requirements 

1. The sample of paired (x, y) data is a random sample of independent quantitative data. 

2. Visual examination of the scatter plot must confirm that the points approximate a straight-

line pattern. 

3. The outliers must be removed if they are known to be errors.   

➢ The effects of any other outliers should be considered by calculating r with and without 

the outliers included. 

Example:  Calculating r 

Using the simple random sample of data below, find the value of r. 

Table 2.1.  
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Given  r = - 0.956, if we use a 0.05 significance level, 

➢ We conclude that there is a linear correlation between x and y since the absolute value of r 

exceeds the critical value of 0.950.  

▪ However, if we use a 0.01 significance level, 

➢ We do not conclude that there is a linear correlation because the absolute value of r does 

not exceed the critical value of 0.999. 

Interpretation of Correlation Coefficient (r) 

• The value of correlation coefficient ‘r’ ranges from -1 to +1  

• If r = +1, then the correlation between the two variables is said to be perfect and positive  

• If r = -1, then the correlation between the two variables is said to be perfect and negative  

• If r = 0, then there exists no correlation between the variables 

Assumptions of Pearson’s Correlation Coefficient  

• There is linear relationship between two variables, 

✓ i.e. when the two variables are plotted on a scatter diagram a straight line will be formed 

by the points. 

• Cause and effect relation exists between different forces operating on the item of the two 

variable series.  

Advantages of Pearson’s Coefficient  

• It summarizes in one value, the degree of correlation & direction of correlation also. 

Limitation of Pearson’s Coefficient 

• Always assume linear relationship  

• Interpreting the value of r is difficult. 

• Value of correlation coefficient is affected by the extreme values. 

• Time consuming methods 

Coefficient of Determination 

The convenient way of interpreting the value of correlation coefficient is to use square of 

coefficient of correlation which is called Coefficient of Determination. The Coefficient of 

Determination = r2. 

➢ Suppose: r = 0.9, r2 = 0.81. This would mean that 81% of the variation in the 

dependent variable has been explained by the independent variable. 

The maximum value of r2 is 1 because it is possible to explain all of the variation in y but it is not 

possible to explain more than all of it.  

iationTotal

iationExplained
ationeroftCoefficien

var

var
mindet =
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Coefficient of Determination: An example 

 

▪ Suppose: r = 0.60 

                             r = 0.30 

• It does not mean that the first correlation is twice as strong as the second the ‘r’ can be 

understood by computing the value of r2 . 
                   
 When    r = 0.60         r2 = 0.36   …………………………………………………………… (1) 

              r = 0.30         r2 = 0.09   …………………………………………………………… (2) 

 

➢ This implies that in the first case 36% of the total variation is explained whereas  in second 

case 9% of the total variation is explained .  

 

C) Spearman’s Rank Coefficient of Correlation (R) 

The above correlation coefficient is used if the variables are quantitative; however, some variables  may be 

qualitative and cannot be measured numerically. For example, sex, religion, educational level and 

profession are qualitative variables and it is impossible to compute correlation coefficient with the formula 

developed in the above section. In this case, we can use another formula, which is called rank correlation 

coefficient (Spearman’s correlation coefficient). 

In this method, we rank the observations in a specific sequence in order of size or importance or other thing 

in ascending or descending order and measure the relationship between their ranks instead of actual values. 

• Spearman Rank correlation is used: 

✓ When statistical series in which the variables under study are not capable of quantitative 

measurement, 

✓ If it can be arranged in serial order,  

➢ In such situations Pearson's correlation coefficient cannot be used  

It is a non-parametric measure of correlation. This procedure makes use of the two sets of ranks 

that may be assigned to the sample values of X and Y. Spearman Rank correlation coefficient 

could be computed in the following cases: 

➢ Both variables are qualitative. 

➢ Both variables are qualitative ordinal. 

➢ One variable is quantitative and the other is qualitative ordinal.  

 

Procedures 

1. Rank the values of X from 1 to n where n is the numbers of pairs of values of X and Y in 

the sample. 

2. Rank the values of Y from 1 to n. 

3. Compute the value of di for each pair of observation by subtracting the rank of Yi from the 

rank of Xi. 
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4. Square each di and compute ∑di2 which is the sum of the squared values. 

5. Apply the following formula  

 

 

 

Where, 

r = Rank correlation coefficient  

D = Difference of rank between paired item in two series. 

N = Total number of observation. 

• The value of rs denotes the magnitude and nature of association giving the same 

interpretation as simple r. 

 

Interpretation of Rank Correlation Coefficient 

 

The value of rank correlation coefficient, R ranges from -1 to +1. If r = +1, then there is complete 

agreement in the order of the ranks and the ranks are in the same direction. If r = -1, then there is 

complete agreement in the order of the ranks and the ranks are in the opposite direction. If r = 0, 

then there is no correlation. 

 

Example 1: Suppose the following table shows how ten singers were ranked according to their 

performance by two judges. We want to find out whether there is agreement among the two judges 

in ranking the ten singers. 

 

Singers A B C D E F G H I J 

Judge 1 9 5 8 1 4 10 7 2 3 6 

Judge 2 10 6 9 2 3 7 8 1 5 4 

 

To decide whether there is an agreement or not among the two judges, we have to compute the 

rank correlation coefficient. In the above example the difference between the two rankings (D) 

made by the two judges is given as follows: 

 

D -1 -1 -1 -1 1 3 -1 1 -2 2 

D2 1 1 1 1 1 9 1 1 4 4 

 

 

• The high value of the rank correlation coefficient indicates that there is an agreement by 

the two judges in rating the singers. 
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Example 2: In a study of the relationship between level of education and income the following 

data was obtained. Find the relationship between them and comment. 

 

Sample 

numbers 

Level of education 

(X) 

Level of income 

(Y) 

A Preparatory 25 

B Primary 10 

C University 8 

D Secondary 10 

E Secondary 15 

F Illiterate  50 

G University  60 

 

Answer: 

 

 X  Y  Rank (X) Rank (Y) di di2 

A Preparatory 25 5 3 2 4 

B Primary 10 6 5.5 0.5 0.25 

C University 8 1.5 7 -5.5 30.25 

D Secondary 10 3.5 5.5 -2 4 

E Secondary 15 3.5 4 -0.5 0.25 

F Illiterate  50 7 2 5 25 

G  University  60 1.5 1 0.5 0.25 

 

∑ di2 = 64 

 

Comment:  

• There is an indirect weak correlation between level of education and income. 
1.0

487

646
1 −=




−=sr
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b) Problems where Ranks are not given: 

 

If the ranks are not given, then we need to assign ranks to the data series. The lowest value in the 

series can be assigned rank 1 or the highest value in the series can be assigned rank 1. We need 

to follow the same scheme of ranking for the other series. Then calculate the rank correlation 

coefficient in similar way as we do when the ranks are given. 

Merits Spearman’s Rank Correlation 

This method is simpler to understand and easier to apply compared to karl pearson’s correlation 

method. This method is useful where we can give the ranks and not the actual data (qualitative 

term). This method is used where the initial data is in the form of ranks. 

Limitation Spearman’s Correlation 

It cannot be used for finding out correlation in a grouped frequency distribution. This method 

should be applied where N exceeds 30. 

Advantages of Correlation studies 

• Show the amount (strength) of relationship present 

• Can be used to make predictions about the variables under study. 

• Can be used in many places, including natural settings, libraries, etc. 

• Easier to collect co relational data 

Disadvantages of correlation studies 

• Cannot assume that a cause-effect relationship exists 

• Little or no control (experimental manipulation) of the variables is possible 

• Relationships may be accidental or due to a third, unmeasured factor common to the 2 

variables that are measured 

Chapter 3: Simple Linear Regression Models 

 

3.1. Introduction (Basic Concepts and Assumptions) 

 

Important points before we start a regression analysis: 

Most important thing in deciding whether or not there is a relationship between X and Y is to have 

a systematic model that is based on logical reasons. Investigate the nature of the relationship 

between X and Y. Use scatter diagram, covariance, coefficient of correlation. 

Remember that regression is not an exact or deterministic mathematical equation. It is a 

behavioral relationship that is subject to randomness. Remember that X is not the only thing 

that explains the behavior of Y. There are other factors that you may not have information about. 

All you are trying to do is to have an estimate of the relationship using the best linear fit possible.  
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The simplest economic relationship is represented through a two-variable model (also called the 

simple linear regression model) which is given by:  

Y = a + bX. 

Where a and b are unknown parameters (also called regression coefficients) that we estimate using 

sample data. 

• a is the intercept of the model 

• b is the slope of the model 

• Y is called the dependent variable 

• X is called the independent (explanatory, exogenous) variable  

Example: suppose the relationship between expenditure (Y) and income (X) of households is 

expressed as: 

   Y = 0.6X+30 

Here, on the basis of income, we can predict expenditure. For instance, if the income of a certain 

household is 150 Birr, then the estimated expenditure will be: 

  Mean expenditure = 0.6 (150) + 30 = 120 Birr 

Note that since expenditure is estimated on the basis of income, expenditure is the dependent 

variable and income is the independent variable. 

The error term 

Consider the above model: Y = 0.6X+30. This functional relationship is exact, that is given income 

we can determine the exact expenditure of a household. But in reality this rarely happens, different 

households with the same income are not expected to spend equal amounts due to habit persistence, 

geographical and time variation, etc.  

Thus, we should express the regression model as: 

   Yi = α + βXi +ϵi 

Where ϵ is the random error term (also called disturbance term) 

Generally the reasons for including the error term include: 

• Omitted variables: a model is a simplification of reality. It is not always possible to 

include all relevant variables in a functional form. For instance, we may construct a model 
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relating demand and price of a commodity. But demand is influenced not only by price: 

income, price of other goods, expectations, taste and several other variables also influence 

it. The omission of these variables from the model introduces an error. 

• Measurement error: inaccuracy in collection and measurement of sample data. 

• Sampling error: consider a model relating consumption (Y) with income (X) of 

households. The sample we randomly choose to examine the relationship may turn out to 

be predominately poor households. In such cases, our estimation of α and β from this 

sample may not be as good as from a balanced sample group. 

Note that the size of the error is not fixed. It is non-deterministic or stochastic. This in turn 

implies that Y is also stochastic. On the other hand, the variable X is deterministic or non-

stochastic. 

In the regression model Yi = α + βXi +ϵi, the values of the parameters α and β are not known. 

When they are estimated from a sample of size n, we obtain the sample regression line given by: 

ni
ii XY ,.........2,1=+=



  

Where α and β are estimated by ., lyrespectiveand 


.YofvalueestimatedtheisY


 Our 

objective is not only to estimate α and β, but also to draw inferences about their values. For this 

purpose, we need some assumptions. 

Assumptions of the classical linear regression model (or OLS model) 

1. The relationship between Y and X is linear, that is, Yi = α + βXi +ϵi 

Violations of this assumption may occur as a result of: 

• Nonlinear relationship between regressors/predictors (Xis) 

• Changing parameters (when the parameters are not constant). 

➢ A regression equation (or function) is linear when it is linear in the parameters (bis) 

2. The error has zero expected value, that is, E ( i ) = 0 

3. The error terms have constant variance, that is E (
2

i ) =
2 for all i 

When you run a regression analysis, the variance of the error terms must be constant, and they 

must have a mean of zero. If this is not the case, your model may not be valid. To check these 
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assumptions, you should use residuals versus fitted values plot. Below is an example of the plot 

from the regression analysis. If, for example, the residuals increase or decrease with the fitted 

values in a pattern, the errors may not have constant variance. 

 

The points on the plot above appear to be randomly scattered around zero, so assuming that the 

error terms have a mean of zero is reasonable. The vertical width of the scatter does not appear to 

increase or decrease across the fitted values, so we can assume that the variance in the error terms 

is constant. 

But what if this was not the case? What if we did notice a pattern in the plot? Look at the following 

plot. 
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There is definitely a noticeable pattern here! The residuals (error terms) take on positive values 

with small or large fitted values, and negative values in the middle. The width of the scatter seems 

consistent, but the points are not randomly scattered around the zero line from left to right.  This 

graph tells us we should not use the regression model that produced these results. 

So what to do? There's no single answer, but there are several options. One approach is to adjust 

your model: adding a squared term to the model could solve the issue with the residuals 

plot.  Alternatively, Minitab has a tool that can adjust the data so that the model is appropriate and 

will yield acceptable residual plots. It is called a Box-Cox transformation, and it is easy to use! 

First just open the General Regression dialog (Stat > Regression > General Regression).  Then 

click the Box-Cox button. 

4. The random variables i are statistically independent of each other, that is, E ( i j ) = 0 for i 

≠ j. 

5. The independent (explanatory) variable X is non-stochastic, that is its values are fixed. This 

implies that the values of X are not correlated with the error term E ( iiX , ) = 0     i = 1, 2, 3…n 

6. The error term is normally distributed. 

The Gauss-Markov Theorem: given the above assumptions of the CLRM, 

( )2,0 iu



29 

 

• The parameter estimators (b1) and (b2) are best (most efficient) Linear Unbiased estimators 

(BLUE) of the true population parameters (B1) and (B2).     

▪ The BLUE criterion 

▪ B for Best  (Minimum error)  

▪ L for Linear (The form of the relationship)  

▪ U for Un-bias (does the parameter truly reflect the effect?)  

▪ E for Estimator  

 3.2. The Least Squares Criteria 

 

There are many techniques in econometrics and statistics that use the least squares criterion. In 

regression techniques this criterion is of immense importance. Why should a criterion be used at 

all? The answer to this question is quite obvious: One has to have an objective measure for 

discrepancies between the estimated values (generated by the statistical model) and the (true) 

observed values. In fact we wish to create mathematical models of our surrounding world in order 

to be able to describe it, to draw conclusions from it, to forecast future behavior of some (economic) 

phenomena, and to explain why certain things happened in the past.  

For obvious reasons these mathematical models are not deterministic but instead, probabilistic 

or stochastic. This is the reason why we have a need for a good criterion to decide whether our 

model does describe the real world as good as possible. Since we cannot hope for a model to 

describe a real phenomenon perfectly, the only thing we can do is to design a method for getting 

as close to the real behavior as possible. This can be achieved by minimizing the error of the 

mathematical model. The most obvious way to express the error made by a probabilistic model is 

to calculate the sum of the deviations between the forecasted values and the real values: 

3.3. Normal Equations of OLS 

3.3.1. The Meaning of Regression 

 

Regression analysis is concerned with the study of the relationship between one variable called 

explained (dependent) variable and one or more of other variables  called independent 

(explanatory) variables. 

Example: The law of demand states that quantity demanded depends on the price of the commodity 

and various other factors. 

▪ The objectives of regression analysis may be: 
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1) To estimate the mean value of the dependent variable given the values of the independent 

variables. 

2) To test hypothesis about the nature of the dependence 

3) To forecast the mean value of the dependent variable, given the values the independent 

variables. 

The Population Regression Function (PRF) 

Price (X) Quantity Demanded (Y) Number of consumers Average Y demanded 

1 45,46,47,48,49,50,51 

 

7 48 

2 44,45,46,47,48 5 46 

3 40,42,44,46,48 

 

5 44 

4 35,38,42,44,46,47 6 42 

5 36,39,40,42,43 5 40 

6 32,35,37,38,39,42,43 7 38 

7 32,34,36,38,40 5  

8 31,32,33,34,35,36,37 7 34 

9 28,30,32,34,36 5 32 

10 29,30,31 3 30 
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From the scatter diagram above one can see that Y generally decreases as X increases and vice 

versa. When we draw a line through the mean values, the line obtained is called the population 

regression line. The population regression line gives the average or mean values of the dependent 

variable Y corresponding to each value of the independent variable, X. 

• Mathematically, the PRF is given as:                    

 

It represents the expected value of Y corresponding to or conditional up on a given value of X. 

In the above table E (Y/Xi =2) = 46. E (Y/Xi) is a function of X. This means the dependence of Y 

on X can be defined simply as the mean of the distribution of Y values which has the given X. In 

other words the population regression line is a line that passes through the conditional means of 

Y. 

• B1 and B2 are called the parameters or the regression coefficients. 

• B1 and B2 are the intercept and slope of the function. 

• In regression we are interested in examining the behavior of the dependent variable 

conditional upon given values of the independent variable (s), and our approach to 

regression analysis could be termed as conditional regression analysis. 

• However, the conditional regression equation E (Y/Xi ) is sometimes simply written as  E 

(Y). 

1.3.....................................................)/( 21 ii XBBXYE +=
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Stochastic Specification of the Population Regression Function 

The average of Y corresponding to X = 1 is 48. However, if we peak a consumer at random from 

the seven consumers corresponding to this price, the quantity demanded by that consumer will not 

necessarily equal 48. The best way to explain this is that individuals demand is equal to the average 

for that group plus or minus some quantity. 

 

Where, ui is the stochastic or random error term or the error term. 

The error term is a random variable, for its value cannot be controlled or known a priori. It can be 

characterized by its probability distribution. 

From the above equation                  is called the deterministic (systemic) component and      is the 

non-systemic (random) component determined by factors other than       . 

▪ The nature of the stochastic error term 

1) The error term may represent the influence of those variables that are not explicitly 

included in the model. 

2) Some intrinsic randomness might occur because of human behavior.                 

3) It might represent measurement errors. E.g. data rounding. 

4) The principle of Occam’s razor: keep the regression model as simple as possible. 

The combined influence of those variables not included might be small and non-systemic and 

could be incorporated in the error term. 

▪ The Sample Regression Function (SRF) 

To fit the PRF we need the entire population data at our disposal. Instead, we have a sample data. 

Then the task is to estimate the PRF on the basis of the sample information. 

Suppose that we have not seen the table above about the population demand for the good and have 

the following sample information. 

A random sample from the above population (sample 1) 

Price (X) 1 2 3 4 5 6 7 8 9 10 

Qt.D (Y) 49 45 44 39 38 37 34 33 30 29 

 

2.3.........................................................21 iii uXBBY ++=

iX

iXBB 21 + iu
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A random sample from the above population (sample 2) 

Price (X) 1 2 3 4 5 6 7 8 9 10 

Qt.D (Y) 51 47 46 42 40 37 36 35 32 30 

 

From the above two sample data we cannot accurately estimate the PRF because of sampling 

fluctuation (sampling error). 

Analogous to PRF, we can develop the concept of sample regression function (SRF). 

 

Where,       is the estimator of E (Y/Xi ), the estimator of the population conditional mean. 

 

• For a given Xi we have one sample observation Yi. 

• In terms of the observed Yi it could be expressed as: 

 

• In terms of the PRF it can be expressed as: 

 

3.3.2. Estimation of Parameters: The Ordinary Least Squares (OLS) Method 

Several methods of obtaining the SRF as an estimator of the true PRF exist. However, the most 

frequently used is that of OLS or sometimes called least squares (LS). OLS estimator has the 

desirable property that it makes the residuals as small as possible. 

                      or the difference between the actual and predicted values of the dependent variable 

as small as possible or                         should be as small as possible. 

• OLS states that b1 and b2 should be chosen in such a way that the residual sum of 

squares,                                                          is as small as possible. 
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▪ The estimated values of b0  and  b1 by OLS  

➢ They are the only possible values of b0 and b1 that minimize the sum of the squared 

differences between Y and    . 

 

Derivation of the Ordinary Least Squares Estimates 

In deriving the parameter values that minimize the difference we can use the technique of 

differential calculus. 

• The goal here is to minimize  

 

 

 

If we take the derivatives with respect to each parameter, we could get the normal equations.  
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• If we divide the equations by -2, we obtain: 

 

 

 

 

 

• Then we can solve for the parameters by multiplying equation 3.12 by        and equation 

3.13 by n: 

 

 

 

• Subtract equation 3.14 from equation 3.15. 

 

 

 

• By using equation 3.19  

 

 

Example: The following results have been obtained from a sample of 11 observations on the values 

of sales (Y) of a firm and the corresponding prices (X). 

 

 

 

• Estimate the regression of sales on prices and interpret your results. 
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But  

 

 

 

 

 

 

 

 

 

 

 

 

• Using deviations to derive the parameters of OLS 
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Because 

 

 

 

 

 

 

 

 

 

 

3.4. Estimation of Elasticities from Regression Equations 

• Note  from our previous discussion that given the estimated function: 

                     the intercept is b1 and the slope is b2.   

• Using the concept of (partial) derivative b2 is given by: 

 

• This shows the rate of change in Y as X changes by small amount. 

• If the estimated function is a linear demand function given by: 

 

• The coefficient b2 is the component of the price elasticity of demand. 

• Remember from your previous studies that the average price elasticity of demand is given 

by: 

 

 

• In the estimated linear demand function                    and elasticity will be given as:  
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Where, P
−

 is the average price in the sample and Q
−

 is the average value of quantity demanded. 

Suppose the estimated demand function for a certain commodity is given by:  Q = 100-20P. If the 

average price of the commodity = Birr 4. And the average quantity demanded is 100 units. 

  Compute the price elasticity of demand. 

Solution: if the average price and average quantity demanded are given, using the coefficients of 

the estimated demand curve we can compute elasticity of demand. 

 

 

Since the absolute value, the price elasticity of demand is less than one, the demand for the 

commodity is inelastic. 

3.5. Coefficient of Correlation and Determination 

What is Correlation? 

The term “correlation” refers to a measure of the strength of association between two variables.  

If the two variables increase or decrease together, they have a positive correlation. If, increases in 

one variable are associated with decreases in the other, they have a negative correlation. 

For two quantitative variables X and Y, for which n pairs of measurements (xi, yi) are available 

Pearson’s correlation coefficient (r) gives a measure of the linear association between X and Y. 

The formula is given below for reference. 

 

• If X and Y are perfectly positively correlated, r = 1 

• If there is absolutely no association, r = 0 

• If X and Y are perfectly positively correlated, r = -1 

• Thus -1 ≤ r ≤ 1. 
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• The closer r is to +1 or -1, the greater is the strength of the association. 

Coefficient of Determination 

It is often difficult to interpret r without some familiarity with the expected values of r. A more 

appropriate measure to use when interest lies in the dependence of Y on X, is the Coefficient of 

Determination, R2. It measures the proportion of variation in Y that is explained by X, and is 

often expressed as a percentage. 

How good is the Model’s prediction Power? 

Total variation is made up of two parts: 

 

Where, 

SST = Total sum of squares; SSR = Regression sum of squares; SSE = Error sum of squares 

     

Where, 

        = Average value of the dependent variable 

    Yi = Observed values of the dependent variable 

        = Predicted value of Y for the given Xi value 

   

SSE       SSR       SST +=

 −= 2)( YYSST i  −= 2)ˆ( YYSSR i  −= 2)ˆ( ii YYSSE

Y

Ŷ
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The coefficient of determination: It is the portion of the total variation in the dependent variable 

(Y) that is explained by variation in the independent variable (X). The coefficient of determination 

is also called r-squared and is denoted as r2. 

                                                                      

   

 

 

Interpretation of R2 

From above, we can say that 66.5% of the variability in the dependent variable is accounted for 

by the independent variable. Clearly there are many other factors that influence the dependent 

variable since about 33.5% of the variability is left unexplained! 

Benefits of R2 and r 

• r is useful as an initial exploratory tool when several variables are being considered. 

• The sign of r gives the direction of the association. 

• R2 is useful in regression studies to check how much of the variability in the key response 

can be explained. 

squares of sum 

 squares of  regression2

total

sum

SST

SSR
r ==

1r0 2 
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• R2 is most valuable when there is more than one explanatory variable. 

• High values of R2 are particularly useful when using the model for predictions!. 

Limitations of r 

Observe that seemingly high values of r, e.g. r = 0.70, explain only about 50%                       of 

the variability in the response variable Y. So take care when interpreting correlation coefficients. 

A low value for r does not necessarily imply absence of a relationship-could be a curved 

relationship! So plotting the data is crucial! Tests exist for testing there is no association.  But 

depending on the sample size, even low values of r, e.g. r=0.20 can give significant results – not a 

very useful finding! 

Limitations of R2 

Note that R2 is only a descriptive measure to give a quick assessment of the model. Other methods 

exist for assessing the goodness of fit of the model. Adding explanatory variables to the model 

always increases R2.  Hence in practice, it is more usual to look at the adjusted R2. 

• The adjusted R2 is calculated as 

• As with R2, the adjusted R2 is often expressed as a percentage. 

3.6. Hypothesis Testing   

Research hypotheses attempt to explain, predict and explore the relationship between two or more 

variables. To this end, hypotheses can be thought of as the researcher’s educated guess about how 

the study will turn out. Hypothesis testing is designed to detect significant differences: differences 

that did not occur by random chance. In the “one sample” case: we compare a random sample 

(from a large group) to a population. We compare a sample statistic to a population parameter to 

see if there is a significant difference. 

• There are two important points that should be kept in mind. 

1. All hypotheses must be falsifiable. That is, hypotheses must be capable of being refuted based 

on the results of the study. If a researcher’s hypothesis cannot be refuted, then the researcher is not 

conducting a scientific investigation. 

2. A hypothesis must be a prediction (usually, about the relationship between two or more 

variables). 

Types of Hypotheses 

There are two kinds of research hypotheses. 
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
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1. The null hypothesis 

The null hypothesis always predicts that there will be no difference between the groups on the 

variable of interest being studied, or the independent variable has no effect on the dependent 

variable.  

2. The alternate (or experimental hypothesis) 

The alternate hypothesis predicts that there will be a difference between the groups, or that the 

independent variable determines the dependent variable. 

Types of Alternate Hypotheses 

Depending upon its sign a research hypotheses can be divided into two categories. 

a) Directional hypotheses  

Directional hypotheses stipulate the direction of the expected differences or relationships between 

variables. In other words, in directional hypotheses the researcher shows the sign of relationship 

between the dependent variable and explanatory variables. For example, a statement “credit has a 

positive effect on technology adoption” is a directional hypothesis. 

b) Non-directional hypotheses 

The statement “income determines technology adoption” is non-directional hypothesis. The 

decision regarding whether to use a directional hypothesis or a non-directional hypothesis depends 

on the researcher’s prior knowledge of the relationship on the variables under consideration. If 

the researcher knows the relationship of variables, and the sign of relationship he or she may opt 

to assign a particular sign (plus or minus) on the hypothesized relationship. 

In other words, if the researcher believes that the two groups differ but does not have a belief 

regarding how the groups differ i.e., in which direction they will differ, and then the researcher 

uses a non-directional hypothesis.  

Steps Used in a Hypothesis Test 

Regardless of the type of hypothesis being considered, the process of carrying out a significance 

test is the same and relies on four basic steps: 

Step One: State the null and alternative hypotheses. Also think about the type 1 error (rejecting 

a true null) and type 2 error (declaring the plausibility of a false null) possibilities at this time and 

how serious each mistake would be in terms of the problem. 
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Step Two: Collect and summarize the data so that a test statistic can be calculated. A test 

statistic is a summary of the data that measures the difference between what is seen in the data 

and what would be expected if the null hypothesis were true. It is typically standardized so that a 

p-value can be obtained from a reference distribution like the normal curve. 

Step Three: Use the test statistic to find the p-value. The p-value represents the likelihood of 

getting our test statistic or any test statistic more extreme, if in fact the null hypothesis is true. 

For a one-sided "greater than" alternative hypothesis, the "more extreme" part of the interpretation 

refers to test statistic values larger than the test statistic given. 

For a one-sided "less than" alternative hypothesis, the "more extreme" part of the interpretation 

refers to test statistic values smaller than the test statistic given. 

For a two-sided "not equal to" alternative hypothesis, the "more extreme" part of the interpretation 

refers to test statistic values that are farther away from the null hypothesis than the test statistic 

given at either the upper end or lower end of the reference distribution (both "tails"). 

Step Four: Interpret what the p-value is telling you and make a decision using the p-value. 

Does the null hypothesis provide a reasonable explanation of the data or not? If not it is statistically 

significant and we have evidence favoring the alternative. State a conclusion in terms of the 

problem. 

Common Decision Rules seen in the literature 

If the p-value ≤ .05, we often see scientists declare their data to be "significant." 

If the p-value ≤ .01, we often see scientists declare their data to be "highly significant". 

If the p-value > .05, we often see scientists declare their data to be "not significant". 

However, such cut-offs are arbitrary and we should not view data any differently when we see a 

p-value of 0.049 versus when we see a p-value of 0.051. There is no magic in the 0.05 value. 

Statistical Inference in Simple Linear Regression Model 

Estimation of Standard Error 

To make statistical inferences about the true (population) regression coefficient,   we make use 

of the estimator 


 and its variance var (


). We know that: 
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Then it follows that an unbiased estimator of var (
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) is given by: 
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Test of Model Adequacy  

The variation in the dependent variable Y can be decomposed as: 
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Total Sum of           Error Sum of         Regression Sum of  

Squares (TSS)        Squares (ESS)        Squares (RSS) 

 

The coefficient of determination is defined as: 
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R2 measures the proportion of variation in the dependent variable, Y that is explained by the 

explanatory variables (or by the linear regression model). It is a goodness-of-fit statistic. 

To test for the significance of R2 (i.e. the adequacy of the model), we calculate the F-ratio.  
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Where k is the number of explanatory variables (or number of parameters estimated from the 

sample data) and n is the sample size. The model is said to be adequate if: 

( )knkFFCal −− ,1  

( )knkFWhere −− ,1 is the value of F-distribution with (k-1) and (n-k) degrees of freedom in the 

numerator and denominator, respectively, for a level of significance α (usually α = 0.01 and  

α = 0.05). Model adequacy test results are often presented in analysis of variance (ANOVA) tables 

(shown below). 

ANOVA TABLE 

Source of 

variation 

Sum of 

squares 

d.f Mean square Variance ratio 

Regression  RSS k-1 

1−k

RSS
 

( )
( )knESS

kRSS
FCal

−

−
=

/

1/
 

Residual  ESS n-k 

kn

ESS

−
 

 

Total  TSS n-1   

Note: The F test is designed to test the significance of all variables or a set of variables in a 

regression model. In the two-variable model, however, it is used to test the explanatory power of 

a single variable (X), and at the same time, is equivalent to the test of significance of R2. 

Test of Significance of Regression Coefficients 
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Consider the simple linear regression model: 

iii XY  ++=  

If there is no relationship between X and Y, then this is equivalent to saying β = 0 (β is not 

significantly different from zero). Thus, the null hypothesis of no relationship between X and Y is 

expressed as: 

H0: β = 0 

The alternative hypothesis is that there is a significant relationship between X and Y, that is:  

H1: β ≠ 0 

In order to reject the null hypothesis, we calculate the test statistic given by: 








−
= 0t                        

 














=
−

=
0

t  

If | t | > ( )22/ −nt then we reject the null hypothesis and conclude that there is a significant 

relationship between X and Y where ( )22/ −nt  is the value from the student’s t distribution with 

(n-2) degrees of freedom for a given significance level α. 

Confidence interval for β. 

Confidence interval provides a range of values which are likely to contain the true regression 

parameter. A (1-α) 100% confidence interval for β is given by:
 




− )2(2/ nt  

Example 1: Consider the following data where the dependent variable (Y) is coffee consumption 

(number of cups) per person per day and independent variable (X) is price of coffee (in Rupees).  

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 Total  Mean  

X 0.77 0.74 0.72 0.73 0.76 0.75 1.08 1.80 1.39 1.20 1.17 11.11 1.01 

Y 2.57 2.50 2.35 2.30 2.25 2.20 2.11 1.94 1.97 2.06 2.02 24.27 2.21 
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Summary statistics 
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The OLS estimator of β is:  
483.0
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The OLS estimator of α is:  6978.2)01.1)(483.0(21.2 =−−=−=
−−

XY   

Thus, the estimated regression line (the consumption function for coffee) is: 

6978.2483.0 +−=



ii XY .This means that the estimated slope coefficient of the consumption 

function for coffee is -0.483 and its standard deviation (standard error) is 0.1143. This is a measure 

of the variability of β from sample to sample. 

 The estimated errors (residuals) are obtained as: 

6978.2483.0 −+=−=


iiiii XYYY
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Year  X  Y  
6978.2483.0 +−=



iY  
iii YY


−=  

2




 

1990 0.77 2.57 2.326 0.244 0.060 
1991 0.74 2.50 2.340 0.160 0.025 

1992 0.72 2.35 2.350 0.000 0.000 
1993 0.73 2.30 2.345 -0.045 0.002 

1994 0.76 2.25 2.331 -0.081 0.007 
1995 0.75 2.20 2.336 -0.136 0.018 

1996 1.08 2.11 2.176 -0.066 0.004 
1997 1.80 1.94 1.828 0.112 0.012 

1998 1.39 1.97 2.026 -0.056 0.003 
1999 1.20 2.06 2.118 -0.058 0.003 
2000 1.17 2.02 2.133 -0.113 0.013 

 0.148 

 

Thus, the error sum of squares (ESS) equals 0.148. We then calculate the regression sum of squares 

(RSS) and the total sum of squares (TSS): 

( ) ( ) 2935.02582.1)148.0 2
2

2

=−== 


i
RSS x  

=+= ESSRSSTSS 4415.0148.02935.0

2
2

2

=+=+


 iX  

The ANOVA table is shown below: 

ANOVA TABLE 

Source of 

variation 

Sum of squares d.f Mean square F 

Regression  0.2935 2-1=1 0.2935 17.848 

Residual  0.148 11-2=9 0.0164  

Total  0.4415 11-1=10   

  

The coefficient of determination is: 

665.0
4415.0

2935.02
===

TSS

RSS
R  

This figure tells us that 66.5% of the variation in coffee consumption is due to changes in price of 

coffee, whereas 33.5% of the variation is due to other factors (variables) not included in our model. 
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To test the significance of R
2
(or model adequacy), the test statistic is 17.848 (shown in the 

ANOVA table). For level of significance α = 0.01, the value from the F-distribution with degrees 

of freedom 1 and 9 is: F0.01 (1, 9) = 10.56. 

Decision: Since the test statistic is greater than the tabulated value, we reject the null hypothesis 

and conclude that the linear model is adequate to explain the relationship between price of coffee 

(X) and coffee consumption (Y). 

The variance of 


 is estimated as: 

( ) ( ) ( )
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Test of hypothesis 

Is there a significant relationship between coffee consumption and price of coffee? The hypothesis 

to be tested is: 

H0: β = 0 

H1: β ≠ 0 

The test statistic is calculated as: 226.4
1143.0

483.0
−=

−
==








t  

For significance level α = 0.01 = 1% (that is 99% level of confidence): 

( ) =− 211005.0t ( ) 25.39005.0 =t . If the computed (calculated) absolute t value | t |, exceeds the critical 

(tabulated) t-value at the chosen level of significance, we reject the null hypothesis. 

Decision: Since | t | > ( )22/ −nt , we reject the null hypothesis and conclude that there is a 

significant relationship between coffee consumption and price of coffee. 

Example 2. Left Handed Artists 



50 

 

About 10% of the human population is left-handed. A researcher at Penn State speculates that 

students in the College of Arts and Architecture are more likely to be left-handed than people in 

the general population. A random sample of 100 students in the College of Arts and Architecture 

is obtained and 18 of these students were found to be left-handed. 

Research Question: Are artists more likely to be left-handed than people in the general 

population? 

Step 1: State Null and Alternative Hypotheses 

• Null Hypothesis: Population proportion of left-handed students in the College of Art and 

Architecture = 0.10 (p = 0.10). 

• Alternative Hypothesis: Population proportion of left-handed students in the College of 

Art and Architecture > 0.10 (p > 0.10). 

Now that you know the null and alternative hypothesis, did you think about what the type 1 and 

type 2 errors are? It is important to note that Step 1 is before we even collect data. Identifying these 

errors helps to improve the design of your research study. Let's write them out: 

Type 1 error: Claim artists are more likely to be left-handed than people in the general population, 

when in truth they are not more likely (reject the null hypothesis when it is true). 

Type 2 error: Fail to claim artists are more likely to be left-handed than people in the general 

population, when they are in fact more likely (accept the null hypothesis when it is false). 

In this case, the consequences of these two errors are fairly similar (e.g. installing more or fewer 

left handed desks in classrooms than are needed). 

Step 2: Collect and summarize the data so that a test statistic can be calculated. 

In the sample of 100 students listed above, the sample proportion is 18/100 = 0.18. The hypothesis 

test will determine whether or not the null hypothesis that p = 0.1 provides a plausible explanation 

for the data. If not we will see this as evidence that the proportion of left-handed Art & Architecture 

students is greater than 0.10. 

If the null hypothesis is true then the standard error of the sample proportion would be  

03.0
100

)1.01(1.0
=

−
and the sample proportion would follow the normal curve. Thus, we can use 

the standard score z = (0.18-0.10) / 0.03 = 2.67 as our test statistic. 
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Step 3: Use the test statistic to find the p-value. 

Using the normal curve table for the Z-value of 2.67 we find the p-value to be about 0.004. Notice 

that the one-sided alternative hypothesis says to watch out for large values so we look at the 

percentage of the normal curve above 2.67 to get the p-value. 

 

Interpretation of the p-value. The likelihood of getting our test statistic of 2.67 or any higher value, 

if in fact the null hypothesis is true, is 0.004. 

Step 4: Make a decision using the p-value. 

Since the p-value of 0.004 is so small, the null hypothesis provides a very poor explanation of the 

data. We find good evidence that the population proportion of left-handed students in the College 

of Art and Architecture exceeds 0.10. 

Now that we have made our decision, we are only at risk of making a type 1 error. It is not possible 

at this point to make a type 2 error because we rejected the null hypothesis. 

Inferential statistics 

• Inferential statistics attempt to generalize the results of descriptive statistics to a larger 

population of interest. 

• Interval estimates 

• Estimates the margin of error in sample statistics compared to population 

values 

• The range around the sample statistics where the true population value is 

likely to be found 

• Example: 95% confidence interval for mean 

• Statistical theory tells us 95% of  the distribution will be within +/– two standard errors of 

the mean 
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Standard error of the mean 

 

Where s = standard deviation; n = sample size 

• If mean from the sample is m, 95% confidence interval for the population mean  

m - 2Sm ≤ x ≤ m + 2Sm  

Standard Error Calculation 

Step 1. Calculate the mean (total of all samples divided by the number of samples). 

Step 2. Calculate each measurement’s deviation from the mean (mean minus the individual 

measurement). 

Step 3. Square each deviation from the mean. Squared negatives become positive. 

Step 4. Sum the squared deviations (Add up the numbers from step 3). 

Step 5. Divide that sum from step 4 by one less than the sample size (n-1, that is the number of 

measurements minus one). 

Step 6. Take the square root of the number in step 5. 

➢  That gives you the “standard deviation (S.D.)”.  

Step 7. Divide the standard deviation by the square root of the sample size (n). That gives you the 

“standard error” 

Step 8. Subtract the standard error from the mean and record that number. 

• Then add the standard error to the mean and record that number. 

• You have plotted mean ±1 standard error (S.E.), then the distance from 1 standard error 

below the mean to 1 standard error above the mean. 

Tests of Statistical Significance between groups 

• You probably have observed differences between groups. 

• You may want to find out if these differences are likely to be due to: 

✓ Chance, or 

n

S
SM =
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✓ If they are real (statistically significant) differences. 

• In order to determine this, you can perform two types of tests.  

• These are: 

• The t-test, and 

• The chi-square test (it will not be discussed under this chapter). 

• The t-test is used for numerical data, when comparing the means of two groups. 

• The chi-square test is used for categorical data, when comparing proportions of events 

occurring in two or more groups.  

T-Test  

• When the sample size is small (approximately < 100) then the Student’s t distribution 

should be used. 

• The t-test, also referred to as Student’s t-test, is used for 

✓  Numerical data to determine whether an observed difference between the 

means of two groups can be considered statistically different. 

Example: 

• It has been observed that in a certain area the proportion of women who are delivered 

through Caesarean section is very high.  

• A study is therefore conducted to discover why this is the case. 

• Small height is known to be one of the risk factors related to difficult deliveries. 

• The researcher wants to find out if there is a difference between the mean height of women 

in this area who had normal deliveries and of those who had Caesarean sections. 

• The null hypothesis would be that there is no difference between the mean heights of the 

two groups of women.  

• Suppose the following results were found: 

Mean heights of women with normal deliveries and of women with Caesarean sections 

Type of delivery No. of women 

included in the study 

Mean height in cm 

 

Standard deviation 

Normal delivery 60 156 3.1 

Caesarean section 52 154 2.8 

• A t-test would be the appropriate way to determine whether the observed difference of 2 

cm can be considered statistically significant. 

• To actually perform a t-test you have to complete 3 steps: 

1. Calculate the t-value 
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2. Choose the level of significance and use a t-table 

3. Interpret the results  

Step 1. Calculating the t-value 

 To calculate the t-value you need to complete the following tasks: 

 Calculate the difference between the means. In the above example the difference is 156-154 = 2 

cm 

a) Calculate the standard deviation for each of the study groups.  

b) Calculate the standard error of the difference between the two means.  

• The standard error of the difference is given by the following formula: 

      

 

Where: SD1 is the standard deviation of the first sample 

 SD2 is the standard deviation of the second sample 

 n1 is the sample size of the first sample 

 n2 is the sample size of the second sample. 

• For our data if we take the women with normal deliveries as sample 1, and 

• Those with Caesarean sections as sample 2 the standard error of the difference is: 

 

 

d) Finally, divide the difference between the means by the standard error of the difference. 

The value now obtained is called t-value. 

• In the above example: 

 

• Expressed in one single formula: 
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Where X1 is the mean value of the first sample, and X2 is the mean value of the second sample) 

Step 2. Using a t-table 

• Once the t-value has been calculated, you will have to refer to a t-table, from which you 

can determine whether the null hypothesis is rejected or not. 

1. First, decide which significance level (a-value or alpha value) you want to use. 

▪ Remember that the chosen significance level (a-value) is an expression of the likelihood of 

finding a difference by chance when there is no real difference. 

➢ Usually we choose a significance level of 0.05. 

2. Second, determine the number of degrees of freedom for the test being performed. 

▪ Degree of freedom is a measure derived from the sample size, which has to be taken into 

account when performing a t-test. 

3. Third, the t-value belonging to the a-value (the significance level we choose) and the 

degrees of freedom are located in the table. 

If the calculated t-value is equal to or larger than the value derived from the table, we then reject 

the null hypothesis and conclude that there is a statistically significant difference between the two 

means. If the calculated t-value is smaller than the value derived from the table, we then accept the 

null hypothesis and conclude that the observed difference is not statistically significant. 

▪ The way the number of degrees of freedom is calculated differs from one statistical test to 

the other. 

▪ For student’s t-test the number of degrees of freedom is calculated as the sum of the two 

sample sizes minus 2. 

 Thus, for the above example, comparing the heights of women with and without Caesarean 

sections, the number of degrees of freedom is: 

➢  d.f. = 60+52-2 = 110 

2

2

2

1

2

1

21

n

SD

n

SD

XX
t

+

−
=

−−
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Note: 

 This is an approximate way of determining degrees of freedom. For the exact method, refer to a 

statistics textbook. 

  In our example we look up the t-value belonging to a = 0.05 and d.f. = 120 and we find it is 1.98.  

Step 3. Interpreting the result 

▪ We now compare the absolute value of the t-value calculated in Step 1 (i.e., the t-value, 

ignoring the sign) with the t-value derived from the table in Step 2. 

▪ In our example the calculated t-value (3.6) is larger than the tabulated t-value (1.98). 

▪ Thus the p-value is smaller than 0.05, and we therefore reject the null hypothesis 

and 

▪ Conclude that the observed difference of 2 cm between the mean heights of women 

with normal deliveries and women with Caesarean sections is a statistically 

significant difference. 

▪ We can express this conclusion in different ways: 

 We can say that the probability that the observed difference of 2 cm of height between the two 

groups of women is due to chance is less than 5%. 

We can also say that the difference between the two groups is 3.6 times the standard error. 
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Chapter 4: Multiple Linear Regression Analysis 

 

4.1. Model with Two Independent Variables 

 

In the previous chapter we considered a regression model with a single independent variable. But 

in practice, economic models generally contain one dependent variable and two or more 

independent variables. Such models are called multiple regression models. 

Suppose Y = f (X1, X2, X3 …... Xk), the general population regression function of multiple 

regression model is given as: 

              Yi= 𝛽0 + 𝛽1X1i + 𝛽2X2i+ 𝛽3X3i+ …………. + 𝛽kXki + i      

However, the simplest form of multiple linear regression model (i.e. a model with two explanatory 

variables) is given by: 

                              Yi= 𝛽0 + 𝛽1X1i + 𝛽2X2i+ i    

Taking the expected value of the above model, we obtain, 

                                     E (Yi/ X1i, X2i) = 𝛽0 + 𝛽1X1i + 𝛽2X2i 

Where: E (Yi/ X1i, X2i) represents the conditional mean of Yi given fixed values of X1i and X2i 

              : 𝛽0 is the average value of Yi when X1i = X2i = 0. 

              : 𝛽1 is obtained by taking the partial derivatives of Yi with respect to X1i keeping 

                 X2i constant. That is, 

tconsXkeeping
X

Y
i

i

i tan, 2

1

1



=  which represents the change in the mean value of Yi with 

respect to X1i keeping X2i constant. Similarly, 𝛽2 is obtained by taking the partial derivatives of Yi 

with respect to X2i keeping X1i constant, i.e. 

tconsXkeeping
X

Y
i

i

i tan, 1

2

2



=  which represents the change in the mean value of Yi with 

respect to X2i keeping X1i constant. 

In  the  multiple  regression  model,  we  add  one more assumption to the  assumptions  of  classical 

linear regression model that we have not discussed in the simple linear regression model in the 

previous unit. This additional assumption says there is no exact collinearity between the 

explanatory variables (no perfect multicollinearity), i.e. no exact linear relationship between the 

explanatory variables. Hence, none of the explanatory variables can be written as a linear 

combination of the remaining explanatory variables. Lack of multicollinearity implies that each 

independent variable does have some information content not contained in the other independent 

variable. 

Example 
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Assume the dependent variable is television sales (Yi) per month in a certain company and the 

explanatory (independent) variables are price of television (X1) and the amount spent in advertising 

(X2). The multiple regression model is given as: 

 

                                    Yi = 𝛽0 + 𝛽1X1i+ 𝛽2X2i + i  

 

𝛽1 is obtained by taking the partial derivatives of Yi with respect to X1i keeping X2i constant, which 

represents the change in the mean value of TV sales due to change in price keeping advertising 

constant. 

 

Similarly,  𝛽2  is obtained by taking the partial derivatives of Yi with respect to X2i keeping X1i  

constant which represents the change in the mean value of TV sales due to change in advertising 

spending keeping price constant. 

 

𝛽0 represents the mean value of TV sales when price and advertising spending are zero. This may 

not have an economic meaning. In a multiple regression model the coefficients measure the change 

in the mean value of the dependent variable due to the change in one of the variable while keeping 

the other variable constant. 

 

Multiple regression model is an extension of simple linear regression model with more than one 

explanatory variable. Let us examine a multiple regression model with two explanatory variables. 

From the theory of demand, quantity demanded for a given commodity (Q) depends on its price 

(P) and consumer income (Y) and given as follows: 

 

                                                                  Q = 𝛽0 + 𝛽1P + 𝛽2Y 

 

Since the theory of demand does not specify the mathematical form, assume the relationship 

between Q, P and Y is linear. 

 

The above mathematical form is an exact relationship which indicates that the variation in the 

quantity demanded is fully explained by changes in price and consumers income. If this 

relationship were true, then any observation on Q, P and Y would represent a point which lies on 

a plane. However, if we gather observations on these variables and plot them on a diagram, we 

will observe that all of them will not lie on a plane.  Some points will lie on the plane while others 

will lie above or below the plane. This scatter is due to various factors omitted from the function. 

The influences of such factors are taken into account by introducing a random variable.  As a 

result, the above function is given as: 

                                                                  Q = 𝛽0 + 𝛽1P + 𝛽2Y + i  
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Where: 𝛽0 + 𝛽1P + 2Y is the systematic component and i  is a random component 

 

From the theory of demand, we will expect that the coefficient 𝛽1 to have a negative sign because 

of the law of demand while 𝛽2 is expected to be positive for normal commodities or negative for 

inferior commodities. 

 

Similar to what we did in unit three, the next step in order to complete the specification of the 

model is, adding assumptions regarding to the random variable. 

 

4.2. Assumptions of the Multiple Regression Model 

 

The assumptions of the classical linear regression model are: 

 

Assumption 1: The model is linear 

i.e. 
iKKi iii

XXXY  +++++= ...33221
 

Assumption 2: Randomness of   

The variable   is a random variable, i.e. its value is unpredictable and hence depends on chance. 

 

Assumption 3: Zero mean of the random variable .  

The random variable   has a zero mean for each Xi 

                                                  i.e. E ( i ) = 0 

Assumption 4: Homoscedasticity 

The variance of each  i is the same for all the Xi values 

                                i.e. var ( i ) = E [ i -E ( i )]2 = E ( i
2) = 2,  constant, since E ( i ) = 0 

Assumption 5: Normality of U 

The values of each  i are normally distributed, i.e. 

                                        Ui   N (0, u 2) 

Assumption 6: Non autocorrelation or serial independence of the U’s 

The values of  i corresponding to Xi are independent from the values of any other Uj 

corresponding to Xj, 

                               i.e. E( i j ) = 0,         for i ≠ j 

Assumption 7: Independence of i  and Xi 

Every disturbance term i  is independent of the explanatory variables, 

                               i.e. E( i Xi) = 0 
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Assumption 8: No errors of measurements in the X’s 

The explanatory variables are measured without error (each of the explanatory variables is non-

stochastic). 

Assumption 9: No perfect multicollinear X’s 

The explanatory variables are not perfectly linearly correlated. 

Assumption 10: Correct specification of the model 

The model has no specification error, i.e. all the important explanatory variables appear explicitly 

in the function and the mathematical form is correctly specified. 

 

4.3. Estimation of Partial Regression Coefficients 

 

After specification of the model, the next step is using sample observations on Y, X1i and X2i and                                                                                                                                                        

obtain estimates  of  the  population  parameters 𝛽0, 𝛽1 and 𝛽2. 

These estimates 
32

,
1 bbb and  of the population parameters 

32
,

1  and respectively will 

be obtained by minimizing the sum of squared residuals. 

The population regression function is given as: 

1.4.....................................................................................
33221 iiii XXY  +++=  

 

and the counterpart sample regression function is given as: 

                  ,
33221 iii XbXbbY ++=



                                              

 

Note that, the true value of Y for given X values is computed as follows: 

                                                    
ii iYY 


+=  

                                            

 

The difference between the actual and the estimated values is given by: 

                                                     

                                                  
ii YY i



−=                                   

To obtain the OLS estimates of the parameters choose 210 ,,  and   such that the sum of square 

of the residuals is as small as possible, i.e. 
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2.4.................................
33221

2

2

 







+−− = iiii

XbXbbYMinimizeMinimize                                       

To minimize this function, take the partial derivative of equation (4.2) with respect to 

210 ,, bandbb  and set to zero and solve for, 210 ,, bandbb . 

                                                                                    ˰                                   ˰ 

In this regard the partial derivative of 𝛽i
2 with respect to 𝛽0 gives us the following result. 

                

( ) 3.4.........................................................0
33221

1

2

2 == −−−−



iii

i XbXbbY
b


 

                

( ) 4.4...............................................0
332212

2

2

2 == −−−−



iiii

i XbXbbYX



 

                   

( ) 5.4.............................................0
332213

3

2

2 == −−−−



iiii

i XbXbbYX



 

 

haveweformdeviationinXandXYgExpres iii ,,sin 32
 

 

                                

6.4............................................................................3322 iii i
xbxby ++=  

 

 

The error sum of squares (ESS) is: 
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 ( ) 7.4....................................3322
2

2

== −− iiii
ESS XbXby  

Thus we derive the normal equations: 

 

( ) 8.4..................................................................0
33222

2

2

2 == −−−



iiii

i xbxbyx
b


 

 

  

9.4............................................................................
323

2
222 iiiii xxbxbyx +=  

( ) 10.4..................................................................0
33223

3

2

2 == −−−



iiii

i xbxbyx
b


 

 

11.4...........................................................................2
333223 +=
iiiii xbxxbyx  

Multiply equation 4.9 by 
2

3ix and multiply equation 4.11 by 
ii xx 32 and subtracting 

equation 4.11 from equation 4.9: 

12.4........
32

2
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2
22323

2
32
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






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


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iiiiiiiiiii xxxxbxxyxxyx
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32
2

3
2

2

32
3

2
32

2 2














−


































=























−























iiii

ii
iiiii

xxxx

xxyxxyx

b  

Similarly, 
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And  

15.4..................................................................33221 XbXbYb −−=

−−

 

 

Example: Consider the following data on per capita food consumption (Y), price of food (X2) and 

per capita income (X3) for the years 1927-1941 in a certain country. Retail price of food and per 

capita disposable income are deflated by dividing the Consumer Price Index. 

 

Year  Y  X2 X3 Year  Y  X2 X3 

1927 88.9 91.7 57.7 1935 85.4 88.1 52.1 

1928 88.9 92 59.3 1936 88.5 88 58 

1929 89.1 93.1 62 1937 88.4 88.4 59.8 

1930 88.7 90.9 56.3 1938 88.6 83.5 55.9 

1931 88 82.3 52.7 1939 91.7 82.4 60.3 

1932 85.9 76.3 44.4 1940 93.3 83 64.1 

1933 86 78.3 43.8 1941 95.1 86.2 73.7 

1934 87.1 84.3 47.8     

 

We want to fit a multiple linear regression model: 

15...,,3,2,133221 =+++= iXXY iiii   

 

Summary statistics: 

289.838
3

2,14.3552
2

,9.275
32

,397.257
3

,63.27
2

:

52667.56
3

,9.852
2

,90667.88

=====

===

−−−

iiiiiiii

areformsdeviationinsumsThe

xxxxyxyx

XXY
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929.992 = iy  

 

Estimates of the regression coefficient are: 

 

21596.0
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08318.8633221 =−−=

−−

XbXbYb  

 

Hence, the estimated model is: 

 

iii XXY 32 378127.021596.008318.86 +−=



  

 

 

4.4. The Partial Correlation Coefficient 

 

In the multiple regressions, the partial correlation coefficient measures the correlation between any 

two variables when all the other variables are held constant. In a partial correlation coefficient, we 

measure the correlation between two variables by removing the influence of other variables. For 

example ryx1.x2 measures the correlation coefficient between Y and X1 when the influence of X2 
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has been removed. In this type of correlation, X2 may be considered as constant when studying the 

relationship between Y and X1. 

This partial correlation coefficient will be given as:  

)1()1(

.

2
21

2
2

2121
21

xrxryx

xrxryxryx
xryx

−−

−
=

 

 

Similarly, the partial correlation between Y and X2 when X1 is kept constant is obtained as: 

)1()1(

.

2
21

2
1

2112
12

xrxryx

xrxryxryx
xryx

−−

−
=  

  

The example below explains the concept discussed above 

 

Example 

 

Suppose the following computation results were obtained from a sample of 12 firms on their output 

(Q), labor input (L) and capital input (K) measured in millions of Birr. 

 

∑    Qi =753                            ∑     Qi
2 = 48139,                   ∑    LiQi = 40830              ∑    KiQi = 6796 

∑    Li = 643                              ∑    Li
2 = 34843                     ∑    Ki = 106                       ∑    Ki

2 = 976 

∑    LiKi = 5779 

 

Assuming linearity we can estimate the model: Qi = 𝛽 1 + 𝛽 2 Li +  𝛽 3 Ki + Ui as follows 

 

The estimates of the regression are given as: 
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
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
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Hence the estimated regression model is given as: 

ii KLQ 37.1944.0073.0 ++=


 

 

Note that b2 = 0.944 represents the amount in which the level of output increases when the level 

of labor input increases by one unit while the level of capital remain the same. Similarly, b3 = 1.37 

represents the amount in which the level of output increases when the level of capital input 

increases by one unit while the level of labor remain the same. On the other hand b1 = 0.073 

represents the level of output, when the amount of labor and capital inputs are zero. 

 

Based on the result obtained we can calculate the partial correlation coefficient rQL.K. That is, the 

partial correlation coefficient between output and labor keeping capital constant. 

)1()1(

.

22 rLKrQL

rQKrLKrQL
KrQL

−−

−
=  

                          

In order to compute this partial correlation coefficient, first we have to compute the simple 

correlation coefficient among the variable as: 
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Similarly, we compute the simple correlation between L and K as: 
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Now the partial correlation coefficient rQL.K is given as: 
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It gives us the correlation between output and labor input when the influence of capital input is 

kept constant. 

 

The partial correlation coefficient rQK.L which measures the correlation between output and 

capital input when the influence of labor input is kept constant is given as: 
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It gives us the correlation between output and capital input when the influence of labor input is 

kept constant. Notice that we can compute the multiple correlation coefficients R2 and the adjusted 

R2 as follows: 



69 

 



−



−−−−

=

−


−−+−−



2

3
2

2

)(

))(())((

QQ

KKQQbLLQQb

R

i

ii
ii

 

 

  




=

−

 −+−



22
3

2
2

)(

)()(

ii

iiiiiiii

QQn

KQKQnbLQLQnb

R  

2
2

)753()48139)(12(

)106)(753()6796)(12)(37.1()643)(753()40830)(12)(944.0(

−

−+−
=R

735.0
10659

844.7832
10659

)1734)(37.1()5781)(944.0(
2 ===

+
R  

It represents the total variation in the total output that is explained by the variation in to two 

explanatory variables, i.e. by the variation in labor input and capital input. 

The adjusted coefficient of multiple determinations is given as: 
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4.5. Analysis of Variance 

 

Analysis of variance for regression:  the procedure to compute the F-ratio which is used to test                                        

the overall significance of the regression coefficients. 

Goodness of fit: The coefficient of determination 

 

The coefficient of determination (R2) can be calculated as usual as: 
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• For a three variable model:  
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R2 measures the proportion of variation in the dependent variable Y that is explained by the 

explanatory variables (or by the multiple linear regression model). It is a goodness-of-fit statistic. 

To test the significance of R2, we calculate the F-ratio: 
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Where k is the number of parameters estimated from the sample data and n is the sample size. We 

say the linear model is adequate in explaining the relationship between the dependent variable and 

one or more of the independent variables if: 
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4.6. Hypothesis Testing 

 

Hypothesis testing in a multiple regression can be tests on individual coefficients or tests on overall 

significance. 

For example, testing the following hypothesis: 

         H0: 𝛽i = 0   against the alternative hypothesis 

         Ha:  𝛽i ≠ 0   i = 0, 1, 2, this is a test on individual coefficients. 

This is significance test for individual parameter. This is similar to our unit three discussion. In 

multiple regression models the econometrician can perform various tests other than individual test 

of significance. 

In general, let Yi = 𝛽1 + 𝛽2X2i+ 𝛽3X3i+ 𝛽4X4i+………… + 𝛽kXki + Ui represent the more general 

formulation of the multiple regression model. 

To test the hypothesis 

         H0: 𝛽2 = 𝛽3 = 𝛽4 =……… = 𝛽k = 0    against the alternative hypothesis 

         Ha: Not all slope coefficients are simultaneously zero. 

This test aims at finding out whether the explanatory variables do have any significance influence 

on the dependent variable. If the null hypothesis is true, then there is no linear relationship between 

the dependent variable and the explanatory variables. 

To test this hypothesis we use the following test statistic: 

),1
1

( knkF

kn
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k
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−
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Where RSS represents the regression (explained) sum of squares, and ESS represents the error 

(residual) (unexplained) sum of squares. 

The decision rule will be: 

Compare the computed (calculated) F-value with the critical (table) value at the chosen level of 

significance, (k-1) for numerator and (n-k) for denominator degrees of freedom which is obtained 

from the F-distribution table. And decide based on the following procedures: 
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❖ If the computed F-value is greater than the critical value, reject the null hypothesis and 

accept that the regression is significant and not all coefficients are zero. 

❖ On the other hand, if the computed F-value is less than the critical value obtained from 

the F-distribution table, then accept the null hypothesis, i.e. accept that the regression 

is not significant and all coefficients are zero. 

We can illustrate the above discussion by taking the following simple multiple regression model 

suppose that Yi = 𝛽1 + 𝛽2X2i+ 𝛽3X3i+Ui, 

Note that K= 3. To test H0: 𝛽2 = 𝛽3 = 0 against the alternative hypothesis which says at least one 

coefficient is non-zero, we can use F-test. The calculated F value is given by: 

  )3,2

3

2
( −

−

= nF

n
ESS

RSS

F                                                      

The decision rule will be: 

• If the calculated F > the critical F-value (table), then reject the null hypothesis. 

• If the calculated F < the critical F-value (table), then do not reject the null hypothesis. 

In other words, the test of overall significance may be conducted by following the procedure stated 

below.  

• Compute the sum of squared deviations of the dependent variable )(
2

YYi

−

 − . This is the 

total sum of squares (TSS).                                                                        

• Compute the sum of squared deviations explained by all the explanatory variables  

2)( YYi

−

− . This represents the explained sum of squares (RSS).          

 

Compute the sum of squared of residual deviations, 

2




iU which is the error (residual) sum of 

squares (ESS). Remember from unit three discussions that total sum of squares (TSS) is the sum 

of explained sum of squares (RSS) and residual sum of squares (ESS). 
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Now let us determine the degrees of freedom for each term. The degrees of freedom for the total 

sum of squares is (n-1), the degrees of freedom for explained sum of squares is (k-1) and the degrees 

of freedom  for  residual  sum of squares is (n-k),  where n is  the total number of observations  and 

k is the total number of  parameters  to  be  estimated including the constant term.  To test the above 

kind of hypothesis, we follow the procedure below: 

 

Compute the F-ratio using the following formula 
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Reject H0 if the calculated F exceeds the table value 

 

Relationship between F and R2 
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The discussion in the preceding sub section point out that there is a relationship between F and R2. 

That is, there is a relationship between the coefficient of determination and F-test. Recall that we 

said for (k-1) independent variables under the null hypothesis   

0........
432

:
0 =====
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Re-writing the above expression allows us to obtain the following result 
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F

)1(

)(

−

−
=  

If we divide both the numerator and denominator by TSS (total sum of squares), we get 

 

TSS

ESS

TSS
RSS

k

kn
F

)1(

)(

−

−
=  

But recall from unit three discussion that 
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Thus, substituting this relationship in the above function we obtain, 
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From this result, the following relationship between F and R2 can be established: 

• If R2 is equal to zero, then F will be zero and in this case don not reject the null hypothesis. 

• If R2 is equal to one, then F will be infinite and in this case reject the null hypothesis. 

• If R2 is higher, then F will be higher and in this case reject the null hypothesis. 

 

Therefore testing the hypothesis 

0............432
:

0 ==== kH 

hypothesisealternativtheAgainst   

  zeroeouslysimularetscoefficienslopeallNotHa tan:  

 

is similar to testing the hypothesis 

 

             H0:  R2 = 0 against the alternative hypothesis 

 

             Ha: R2 ≠ 0 

 

The following example illustrates the discussion about individual and joint hypothesis testing 

 

Example 

 

Consider the following regression models; 

 

8407.010935.0
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XXYi

                               

 

 

Note that the figures in the bracket measure the standard error of each estimate. Using  the above 

information,  we  can test  the overall  goodness  of  fit  at 5%  level  of  significance. That is we 

can assess the joint significance of the model. The hypothesis to be tested in this case is 

 

                          H0:  𝛽1 = 𝛽2 = 0 against the alternative hypothesis 
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                         Ha: Not all slope coefficients are simultaneously zero. 

 

To test this hypothesis, we use the following test statistic: 
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The (table) critical value at 0.05 level of significance and 2 and 7 degrees of freedom for 

numerator and denominator from the F- distribution  table, i.e. F0.05 (2.7) = 4.74 

 

The decision rule will be since F calculated value is greater than the F critical (k-1, n-k), then 

reject the null hypothesis. That is, since the computed F-value 50.32 is greater than the critical 

value 4.74, we reject the null hypothesis. Therefore, we reject the hypothesis that all slope 

coefficients are simultaneously zero. 

 

Based on the result given, it is also possible to perform individual significance test. That is we 

can test 

                          H0:  𝛽1 = 0 against the alternative hypothesis 

                          Ha: 𝛽1 ≠ 0 

And  

 

                          H0:  𝛽2 = 0 against the alternative hypothesis 

                          Ha: 𝛽2 ≠0 

 

Note that this is test of significance of individual parameters. Recall that in this case, we use the 

following test statistic:                                                  
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 An estimator of the error variance 2 is: 
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k is the number of parameters to be estimated which in this case is 3. 

 

Thus: 
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In order to estimate the variances of estimated regression coefficients, the coefficient of correlation 

between X1 and X1 must be estimated. 

                 

It can be shown that: 
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Where r12 is the coefficient of correlation between X1 and X2 that is: 
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Taking the square roots, we obtain the standard errors: 
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The test for β1 therefore, will be 
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The critical value at 0.05 level of significance and 7 degrees of freedom from the t-distribution 

table, i.e. t 0.025(7) = 2.365 

 

The decision is since the computed t-value which equals 5 is greater than the critical value of 

2.365, we reject the null hypothesis. Therefore, we accept the alternative hypothesis. 

 

Similarly, we can test the significance of β2. We use the following test statistic: 
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Note that, the critical value at 0.05 level of significance and 7 degrees of freedom from the t- 

distribution table, i.e. t 0.025 (7) = 2.365 

 

The decision, therefore, is to accept the null hypothesis, since the computed t-value 0.5 is less 

than the critical value 2.365. 

 

4.7. Other Functional Forms (Linear Regression Model and the Non-linear Relationship) 
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For many economic theories, the assumption of linear relationship between the dependent variable 

and independent variable may not hold, rather the relationship may be non-linear forms. For 

example, cost functions are usually non-linear. Similarly, production functions exhibit nonlinear 

pattern. Other economic functions like demand, supply, income-consumption curves, etc. can also 

be non-linear. 

For example, the traditional theory of cost curves may be approximated by a polynomial of third 

degree in output. 

                                            C = 𝛽0   + 𝛽1Q - 𝛽2Q
2 + 𝛽3Q

3 +U 

Where: C is cost 

             Q is output 

A demand function represented by the following formula is also another example of regression 

model with non-linear relationship 

      
UYPQ 21

0


=

                                           

Where: Q is the demand for a commodity 

              P is price of the commodity 

              Y is consumers’ income 

 

Such kind of non-linear relationship may be estimated by fitting non-linear functions and can be  

estimated by the method of ordinary least squares (OLS). However, there are other forms of 

relationship in which the relationship are non-linear in the parameters not in variables. Estimating 

such kind of relationship is more complex. In this section, we will focus on estimating a function 

which is non-linear in the variables but linear in the parameters, by making transformations of the 

data before the estimation of the parameters. 

 

For example, to estimate the function Y = 𝛽0+ 𝛽1X+ 𝛽2X
2+ 𝛽3X

3+U, we may set Z = X2 and W=X3 

and transform the function into Y = 𝛽 0+ 𝛽1X+ 𝛽2Z+ 𝛽3W+U and apply ordinary least squares to 

linear function to estimate the parameters. 

 

Example 

 

To illustrate the above discussion consider the following estimated cubic cost function, 
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32 54.036.104.502.124 QQQC +−+=


    

         (3.4)            (4.2)            (0.24)            (0.05) 

 

         Cov (β2, β3) = -0.02       and R2 = 0.96          n = 10             

                            

Where C is total cost and Q is output. 

Suppose we want to test the hypothesis that the coefficients of Q2 and Q3 are the same, i.e. 

       H0: 𝛽2= 𝛽3   against the alternative hypothesis 

       Ha: 𝛽2≠ 𝛽3 at = 5% level of significance 

To test this hypothesis, first we have to compute the following test statistic                                                    
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The next step is finding the critical value at 0.05 level of significance, with 6 degrees of freedom 

from the t-distribution table for two tailed test, which is 2.447. Then by comparing the computed 

t-value with the critical value, we can give the conclusion. Since, the computed t-value 34.49 is 

greater than the critical value 2.447; we can reject the hypothesis that the coefficients of Q2 and 

Q3 in the cubic cost function are identical. 

 

Suppose we want to estimate the function   
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We may take logarithm to the base e on both sides of the given function and obtain the following 

function. 

             

UXXY eeee
+++= 22110 loglogloglog                                     

 

This function will retain the usual assumptions so that 

                                               E (U) = 0,                Var (Ui) = E (U2) = 𝜎2
u 

                                   Cov (UiUj) = E (UiUj) = 0, for i ≠ j and 

                                              E (UXi) = 0 

Now set logeY = Y*, logeβ0 = β0*, logeX1 = X1* and loge X2 = X2*. This will transform the function 

into: 

                                         Y* = 𝛽0
*+ 𝛽1X1

*+ 𝛽2X2
* + U 

Which is a linear function and we can apply ordinary least squares to obtain estimates of the 

parameters (after transforming X and Y into logarithms). Note that to get back the β0 we use the 

backward transformation:  
*

00 10
 =  

The above transformed model is called log-log, double-log or log-linear model. One attractive 

feature of the log-log model, which has made it popular in applied work, is that the slope 

coefficient 𝛽1 and 𝛽2 measures the elasticity of Y with respect to X1 and X2. 

Example 

                                                         

Suppose the estimated value 𝛽1 = 0.5.  This implies that a one percent increase in X1 will result a  

0.5% increase in Y assuming that X2 is held constant. Similarly if 𝛽2 = 0.75, it implies that a one 

percent increase in X2 will result in a 0.75% increase in Y assuming that X1 is held constant. 

 

Consider the Cobb-Douglas production function which is given as follows: 

UeKLQ 21
0


=

 

Where Q represents output: L represents labor input; and K represents capital input 
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To interpret the coefficients 𝛽1and 𝛽2, let’s take logarithms to the base e on both sides. In this case, 

we will obtain the following. 

 

ln (Q) = ln (𝛽0) + 𝛽1ln(L) + 𝛽2ln(K) +U 

 

In this relationship, β1 represents the percentage change in the level of output as a result of a one 

percentage change in the labor input while the effect of capital input is held constant. It is the 

elasticity of the factor input labor. Similarly, 𝛽2 represents the percentage change in the level of 

output as a result of a one percentage change in the capital input while the effect of labor input is 

held constant. It is the elasticity of the factor input capital. 

 

Note that, the marginal product of labor (MPL) is obtained by taking the partial derivatives of 

 ln (Q) with respect to ln (L). It is given as: 

1)ln(

)ln(
==




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Q
MPL  

Similarly, the marginal product of capital (MPK) is obtained by taking the partial derivatives of ln 

(Q) with respect to ln (K). It is given as: 

2)ln(
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Since the values of 𝛽1 and 𝛽2 are constant, the marginal product functions of the two factors are 

constant. 

 

Chapter 5: Dummy Variable Regression Analysis 

5.1. Definitions of Dummy Variables 

In a regression analysis, the dependent variable is influenced not only by quantitative variables 

like income, output, price, cost, temperature…etc., but also by variables that are qualitative in 

nature like sex, race, color, religion, marital status, job category, region, season etc. These 

qualitative variables indicate the presence or absence of a “quality” or an “attribute” such as male 

or female, black or white…etc. such variables are called dummy variables. 

We quantify such variables by artificially assigning the values of 0 and 1, where 0 indicates one 

category and 1 indicates another category (like male = 0, female = 1), and use them in the 

regression equation together with the other independent variables.  
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5.2. ANOVA Models 

Dummy variables can be used in regression model just as quantitative variables. A regression 

model may contain only qualitative explanatory variables. Such models are called analysis of 

variance (ANOVA) models.  

Consider the following model: 

)..(,0
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)1(............................................................................21

femaleislecturertheifeiotherwise

maleislecturertheifD

lectureraofsalaryannualtherepresentsYWhere
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This is a two-variable regression model, which enables us to check whether sex makes any 

difference in salary of a lecturer, if all variables which affect salary are held constant. By assuming 

the disturbance term satisfy the assumptions of classical linear regression model,  

Average salary of male lecturer = E (Yi/Di = 1) = α1 + α2 (1) = α1 + α2  

Average salary of female lecturer = E (Yi/Di = 0) = α1 + α2 (0) = α1  

The intercept term α1 gives the average salary of female lecturer and α1 + α2 gives the average 

salary of male lecturer. The slope α2 gives the amount by which the average salary of male lecturer 

differs from the average salary of female lecturer. If α2 is equal to zero, then there is no sex 

discrimination, i.e. if all other variables which affect salary are held constant, then the sex of a 

person cannot bring a change in the salary of a lecturer. A test of the hypothesis that there is no 

sex discrimination can be made by running regression using the method of ordinary least squares 

and use t-test to check whether the estimated coefficient α2  is statistically significant or not. If the 

t-test shows that α2 is statistically significant, then we reject the null hypothesis that the average 

salary of male lecturer is the same as the average salary of female lecturer (H0: α2 = 0).  

Example  

Consider the following estimated model: 

10)1.10()4.50(

50012000
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+=

nt

DY i
 

Where Di = 1, if the lecturer is male 
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                = 0, otherwise 

               Yi is the salary of the lecturer 

As this result shows, the estimated average salary of female lecturer is 12,000. This holds when Di 

= 0. For male lecturer, the estimated average salary is 12,500. This is because Di = 1. Since the 

coefficient of Di is statistically significant (using t-test), the average salaries of the two categories 

are different and the average salary of female lecturer is lower than the average salary of male 

lecturer.      

5.3. ANCOVA Models 

Regression models in most economic research involve quantitative explanatory variables in 

addition to dummy variables. Such models are known as analysis of covariance (ANCOVA) 

models. 

Take the previous example, which shows the relationship between average salaries of lecturers and 

sex and include another quantitative explanatory variable like years of teaching experience and re-

write as: 
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This model contains one qualitative variable (sex) and one quantitative variable (years of teaching 

experience). By assuming the disturbance term satisfy the assumptions of classical linear regression 

model, 

 

Average salary of male lecturer = E (Yi/Xi, Di = 1) = α1 + α2 + α3Xi  

Average salary of female lecturer = E (Yi/Xi, Di = 0) = α1 + α3Xi 

You can observe that both male and female lecturers’ salary functions in relation to the years of 

teaching experience have the same slope (α3) but different intercepts (α1 for female lecturers and 

α1 + α2 for male lecturers). In other words, the level of the male lecturers’ average salary is different 

from female lecturers’ average salary by α2 but the rate of change in the average salary due to a 

change in years of experience (slope) is the same for both sexes. 
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Under the assumption of common slope (α3), a test of hypothesis that the two regression models    

for male and female lecturers have the same intercept, i.e.  there is no sex discrimination can be 

made by running regression using the method of ordinary least squares on equation number 2 and 

using  t-test we can check whether the estimated α2 is statistically significant or not. If the t-test 

shows that α2 is statistically significant, then we reject the null hypothesis that the male and female 

lecturers’ level of average salary is the same (Ho: α2 = 0) 

So far, we include a qualitative variable with two categories like male versus female; however, 

qualitative variables may have more than two categories. For example, suppose we are interested 

in analyzing beer consumption. Factors affecting consumption are income, age, gender, season, 

race, religion, education and marital status and so on. In this example, variables such as: income, 

expenditure and age are quantitative variables whereas variables such as: gender, religion, race, 

marital status and season are qualitative variables. Education may be qualitative or quantitative 

depending on the value taken. For example, if one takes the number of years of schooling (year 1, 

2, 3…) as a value, then education becomes a quantitative variable. Otherwise, if one take level of 

education like primary, secondary and tertiary as a value then education becomes a qualitative 

variable. 

Some qualitative variables may take more than two categories. In this case, in order to avoid the 

dummy variable trap, we have to include m-1 dummy variables if the qualitative variable has m 

categories. Otherwise, a perfect multicollinearity problem may arise and the method of ordinary 

least squares estimation is not possible. 

Let’s consider three mutually exclusive levels of education: less than high school, high school and 

college. Since we have three categories, we should introduce two dummies to take care of the three 

levels of education as: 

                             D1 = 1, if high school education 

                        = 0, otherwise 

 

                             D2 = 1, if college education 

                        = 0, otherwise 

 

Consider the following model: 
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otherwise

educationcollegeifD

otherwise

educationschoolhighifD

lectureraoferiencesteachingtherepresentsX

lectureraofsalaryannualtherepresentsYWhere
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In this model, the less than high school education category is the base category which is represented 

by α1. The other coefficients α2 and α3 tell by how much the intercepts of the other two categories 

differ from the intercept of the base category. By assuming the disturbance term satisfies the 

assumptions of classical linear regression model. 

 

Average salary for less than high school = E (Yi/D1 = 0, D2 = 0, Xi) = α1+ α4Xi 

 

Average salary for high school complete = E (Yi/D1 = 1, D2 = 0, Xi) = (α1+ α2) + α4Xi 

 

Average salary for college complete = E (Yi/D1 = 0, D2 = 1, Xi) = (α1+ α3) + α4Xi 

 

Under the assumption of common slope (α4), a test of hypothesis that the three regression models 

for less than high school, for high school and for college complete teachers have the same intercept 

can be performed.  That is, employing the method of ordinary least squares on equation 3 and using  

t-test we can check whether the estimated α2 and α3 is statistically significant or not. Note that, this 

tests whether they are different from the base category or not. If the t-test shows that the differential 

intercepts α2 and α3 are individually statistically significant, then we reject the null hypothesis that 

there is no difference from the base category. Using F-test, it is also possible to test the hypothesis 

that α2 = α3 = 0. 

Chapter 6: Econometric Problems 

 

In this Chapter, we will see the method of assessing the reliability of the estimates of the 

parameters from econometric criteria point of view. Recall that, in the previous Chapters we said 

that after the estimation of the parameters with the method of ordinary least squares, we should 

assess the reliability of the estimates of the parameters based on three types of criteria before 

using the estimates for forecasting purpose. These are: 
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• A priori economic criteria which are determined by economic theory and related to the sign 

and magnitude of the parameters. 

• Statistical criteria which are determined by the statistical theory. 

• Econometric criteria which are determined by the econometric theory. 

 

Further recall that, the statistical criteria are the coefficient of determination, the standard errors of 

the estimates and the related t and F-statistics. These tests are valid only if the assumptions of the 

linear regression model are satisfied. Thus, if the assumptions of an econometric model are 

violated, then the estimates obtained using the method of Ordinary Least Squares do not possess 

some or all of their optimal properties discussed in the earlier Chapters. Therefore, their standard 

error becomes unreliable criteria. 

 

Econometric criteria provide evidence about the validity or the violation of the assumptions of the 

linear regression model. In this Chapter, therefore, we will see the violation of the assumptions, 

the sources of violation, the consequences of the violation of the assumptions on the parameters 

and on their standard error, the test available for each assumption and the solution that have been 

suggested as “remedies” of the situation created by the violation of the assumption. 

6.1. Non-normality 

Building a linear regression model is only half of the work. In order to actually be usable in 

practice, the model should conform to the assumptions of linear regression. 

• Classical normal linear regression (CNLR) assumes that each Ui is distributed normally 

 Ui  N (0, 2) with: 

     Mean = E (Ui) = 0    

     Variance = E (Ui
2) = 2    

     Cov (Ui, Uj) = E (Ui, Uj) = 0     (i # j)  

Note: For two normally distributed variables, the zero covariance or correlation means 

independence of them, so Ui and Uj are not only uncorrelated but also independently distributed. 

Therefore    Ui  NID (0, 2) is Normal and independently distributed. 

Violations of normality create problems for determining whether model coefficients are 

significantly different from zero and for calculating confidence intervals for forecasts. Sometimes 

the error distribution is "skewed" by the presence of a few large outliers. Since parameter 

estimation is based on the minimization of squared error, a few extreme observations can exert a 

disproportionate influence on parameter estimates. Calculation of confidence intervals and various 

significance tests for coefficients are all based on the assumptions of normally distributed errors. 
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If the error distribution is significantly non-normal, confidence intervals may be too wide or too 

narrow.  

Technically, the normal distribution assumption is not necessary if you are willing to assume the 

model equation is correct and your only goal is to estimate its coefficients and generate predictions 

in such a way as to minimize mean squared error.  The formulas for estimating coefficients require 

no more than that, and some references on regression analysis do not list normally distributed 

errors among the key assumptions. But generally we are interested in making inferences about the 

model and/or estimating the probability that a given forecast error will exceed some threshold in a 

particular direction, in which case distributional assumptions are important.  Also, a significant 

violation of the normal distribution assumption is often a "red flag" indicating that there is some 

other problem with the model assumptions and/or that there are a few unusual data points that 

should be studied closely and/or that a better model is still waiting out there somewhere. 

6.2. Multicollinearity 

6.2.1. The nature and causes of the Multicollinearity Problem 

 

Multicollinearity is a term that is used to denote the presence of linear relationship among explanatory 

variables. If the explanatory variables are perfectly linearly correlated, i.e. if the correlation 

coefficient is one, then the parameters become indeterminate. In this situation, it is impossible to 

obtain numerical values for each parameter separately and the method of ordinary least squares does 

not hold. 

 

If, on the other hand, the correlation coefficient for explanatory variables is equal to zero, then the 

variables are called Orthogonal, and there are no problems concerning the estimates of the 

coefficients. Orthogonal variables are the variables whose covariance is zero. 

 

In the case of orthogonal variables, there is no need to perform a multiple regression analysis. Each 

parameter can be estimated by simple regression of Y on the corresponding regressor. In practice 

neither of the two extreme cases i.e.  Orthogonal or perfect collinearity exist, rather there is   some 

degree of inter correlation among the explanatory variables. Thus, the correlation coefficient for each 

pair of explanatory variables will have a value between zero and one. 

 

Multicollinearity  is  not a condition that either exists or does not exist in economic variables but 

rather  inherent  in  most  economic  relationships  due  to  the  interdependence  of  many economic 

variables. However, there is no consensus on the degrees of collinearity that affect the parameter 

estimates. In other words, Multicollinearity is a question of degree and not of its existence. 
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When any two explanatory variables are changing in the same way, it becomes difficult to measure 

the influence of each variable on the dependent variable. 

 

Multicollinearity may arise for various reasons. These are 

• There is a tendency of economic variables to move together over time. Economic variables 

may be influenced by the same factors and show the same pattern of behavior over time. For 

example, consumption, income, saving, investment and employment tend to rise in periods of 

economic expansion (boom) and decrease in periods of recessions. Hence growth and trend 

factors in time series are the most serious causes of multicollinearity. 

• The use of lagged values of some explanatory variables as separate independent variables in 

the model.  For example, in consumption function, past as well as the present values of income 

are included as explanatory variables. We know that the successive values of a variable are 

intercorrelated. Thus multicollinearity is almost certain to exist in distributed lag models. 

• When the model has more explanatory variables than the number of observations (an over 

determined model), there may be a problem of multicollinearity. 

Multicollinearity tends to be more serious problem in time series. However, it is quiet frequent in 

cross section data as well. 

6.2.2. Consequences of Multicollinearity  

 

If the correlation between the explanatory variables is perfect (r = 1), then the estimates of the 

coefficients are indeterminate and the standard errors of these estimates become infinitely large. If, 

on the other hand, the explanatory variables are not perfectly collinear but are correlated to a certain 

degree, then the effect of collinearity is uncertain. 

Even if multicollinearity is strong, the estimates of the coefficients are unbiased i.e. the unbiasedness 

of the OLS estimates is not affected by correlation of explanatory variables. However, the instability 

of the estimates may be serious and even cause a change in the sign of the parameter estimates as 

the degree of collinearity increases, depending on the importance of each explanatory variable 

measured by correlation coefficient of dependent and independent variables. 

When certain explanatory variables are more important than others and correlated with the 

dependent variable, the seriousness of the problem is greater. In general, multicollinearity is not 

necessarily a problem unless it is high relative to the overall degree of multiple correlations among 

all variables simultaneously, i.e. 

Collinearity is harmful if  r2
 Xi Xj ≥ R2y.X1,X2…,Xk  where  r2xixj  is the simple correlation 

coefficient  between any two explanatory variables Xi and Xj and R2y.x1,x2…,xk is the overall 

(multiple) correlation coefficient of the relationship. 
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In general, although there may be exceptions, increasing standard errors appear when we include 

correlated variables as explanatory variables in the function. 

With multicollinearity, we may face the problem of mis-specification because we may reject a 

variable whose standard error appears high although this variable is an important determinant of the 

variations of the dependent variable.  Therefore, multicollinearity results in the wrong decision and 

in the wrong specification of the model. 

The concept of multicollinearity is best elaborated with the following example. Consider the 

following estimated three variable regression model: 

  
22110 XXYi 



++=                    

 

The effect on the regression coefficients of X1 and X2 are perfectly collinear is explained as follows. 

Note that 
1



 gives the rate of change in the average value of Y as X1 changes by a unit holding X2 

constant.  However, if X1 and X2 are perfectly collinear, then there is no way X2 can be kept constant. 

So that when X1 changes, X2 also changes by a certain constant factor, i.e. there is no way to 

distinguish the separate influences of X1 and X2 on the dependent variable. As a result, there is no 

way to estimate the coefficients of X1 and X2 uniquely and we cannot get a unique solution for the 

individual regression coefficients. 

 

Example: 

 

Suppose Y = consumption, X1 = wealth, X2 = income 

 

Consumption (Y) Income (X1) Wealth (X2) 

90 100 500 

140 150 750 

190 200 1000 

240 250 1250 

280 300 1500 

 

The relationship X2 = 5X1 means that the wealth level for each individual is five times the level of 

his/her income. Suppose our aim is to see the consumption pattern of individuals at varying levels 

of income keeping wealth constant (that is, with the same wealth). This task needs data on 

individuals with the same wealth but different income. But this is not the case here since whenever 

income changes (varies) so does wealth (by five times). Thus, the task cannot be settled. 
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Question: Can we estimate B1 and B2? 

 

We have seen earlier that the OLS estimator of B1 is: 
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Since we have X2 = 5X1 we can replace X2 by 5X1: 
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 Meaning 


 is indeterminate. Therefore, in the presence of perfect multicollinearity, the 

regression coefficients cannot be estimated. 

 

Less than perfect multicollinearity (moderate to strong MC) 

 

 Consider the case when there is a high degree but not perfect MC. What happens to the parameter 

estimates when there is a high degree of MC? 

The estimated coefficients are still unbiased, that is 3,2,1)( ==



jE jj   
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We have seen earlier that the variance of 
2



 is given by: 
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Where r23 is the coefficient of correlation between x2 and x3, and the variables x2 and x3 are 

expressed in deviation from their mean. It can clearly be seen that as the correlation between x2 

and x3increases, that is, as r23tends towards one: 
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Particularly, if r23 = 1, then the variances become infinite. 

Recall that to test whether each of the coefficients is significant or not, i.e, 

H0: βj = 0 

HA: βj ≠ 0 

The test statistic is: 
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j
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Thus, under a high degree of MC, the test statistic will be very small number. This often leads to 

accepting the null hypothesis when in fact the parameter is significantly different from zero. 

Major implications of a high degree of multicollinearity 

1. OLS coefficient estimates are still unbiased. 

2. OLS coefficient estimates will have large variances. 

3. There is a high probability of accepting the null hypothesis of zero coefficient (using the 

t-test) when in fact the coefficient is significantly different from zero.  
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4. The regression model may do well, that is R2 may be quite high. 

5. The OLS estimates and their standard errors may be quite sensitive to small changes in 

the data. 

6.2.3. Tests for detecting multicollinearity 

 

Detection of multicollinearity 

 

Multicollinearity almost always exists in most applications. So the question is not whether it is 

present or not; it is a question of degree. Multicollinearity is not a statistical problem; it is a data 

(sample) problem. Therefore, we do not “test for MC”; but measure its degree in any particular 

sample (using some rules of thumb). 

 

The seriousness of the effects of multicollinearity depends on the degree of correlation between 

variables and on the overall correlation coefficient. Thus, the standard errors, the partial correlation 

coefficients and the overall correlation coefficients may be used for testing multicollinearity. 

Let’s examine some of these rules of detecting or measuring the degree of multicollinearity as 

follows: 

➢ High R2 but few significant t-ratios. If R2 is high,  then the F-test will reject the hypothesis 

that the partial slope coefficients are simultaneously equal to zero, but the individual t-tests 

may show none or very few of the partial slope coefficients are statistically different from 

zero. In this case the problem of multicollinearity is serious. 

➢ High pair wise correlations among regressors. If the pair wise correlation coefficient 

between two regressors is high (in excess of 0.8), then multicollinearity is a serious 

problem. 

➢ Auxiliary regressions: Variance inflation factor (VIF) 

The VIF for each estimated regression coefficient is defined as: 

2
1

1)(

j

j
R

VIF
−

=



   

Where Rj
2 is the coefficients of determination obtained when the jth variable is regressed on the 

remaining X variables (called auxiliary regression). 
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a) If )( jVIF 


exceeds 10, then j


is poorly estimated because of MC. Or the jth 

regressor variable (Xj) is responsible for MC. 

b) Klien’s rule: MC is troublesome if any of the Rj
2 exceeds the overall R2. 

 6.2.4. Solutions for multicollinearity 

The solutions for multicollinearity depend on the severity of multicollinearity, on availability and 

sources of data, on the importance of factors which are multicollinear and on the purpose for which 

the model is being estimated. 

 

If multicollinearity affects some of the less important factors (variables), one may exclude these 

factors from the model. If, on the other hand, multicollinearity has serious effects on the coefficient 

estimates of important factors, then take one of the following corrective solutions. 

 

1. Increase the size of the sample 

Multicollinearity may be avoided or reduced if we increase the size of the sample by gathering 

more observations. By increasing the sample size, the covariances among estimated parameters 

resulting from multicollinearity can be reduced. This is because covariances are inversely 

proportional to sample size. This is true only if multicollinearity is due to errors of measurement 

and multicollinearity exists only in the sample but not in the population. If the populations of the 

variables are multicollinear, then an increase in the size of the sample will not help in reduction of 

multicollinear relations among the variables. 

 

2. Substitution of lagged variables for other explanatory variable (distributed lag models) 

Some economic variables may be determined not only by the current values of the explanatory 

variables but also by past values of these variables. The successive values of any explanatory 

variable are highly correlated. In this case, multicollinearity may be avoided by adopting Koyck’s 

suggestion of substitution of the lagged value of X for single lagged values of dependent variable. 

Instead of having all the lagged values of the explanatory variables, we use lagged values of the 

dependent variable which are expected to be less correlated than the lagged values of explanatory 

variables. 

 

3. Introduction of additional equations in the model. 

Multicollinearity may be overcome by introducing additional equations into our model to express 

fully the relationships between the multicollinear explanatory variables. By explicitly formulating 

these relationships, we can form a simultaneous equation technique. This will reduce the problem of 

multicollinearity. 

 

4. Dropping a variable(s) from the model 
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When there is a multicollinearity problem, the simplest solution may be to drop one or more of the 

collinear variables. However, dropping variables from the model may lead to model specification 

error. Therefore, in reducing the severity of the collinearity problem by dropping variable(s), we 

may obtain biased estimates of the coefficients retained in the model. 

  

5. Transformation of variables 

When there is a multicollinearity problem, transformation of variables included in the model can 

minimize the problem of collinearity. 

 

6.3. Heteroscedasticity 

 

6.3.1. Definition and Sources of Heteroscedasticity 

 

An important assumption of the classical linear regression model is that the population disturbances 

term, Ui are homoscedastic i.e. they all have the same variance. Which means “equal scatter” (of the 

error terms ui around their mean, 0). Equivalently, this means that the dispersion of the observed 

values of Y around the regression line is the same across all observations.  

 

This holds since E (Ui) = 0. That is,  

 Var (Ui) = E [Ui-E (Ui)]
 2 = E (Ui

2) = 𝜎2, 

This is the assumption of homoscedasticity. It suggests that the conditional variance of the 

dependent variable conditional upon the given value of the explanatory variable remains the same 

regardless of the values taken by the variable X. On the other hand, when the conditional variance 

of the dependent variable increases as the value of the explanatory variable increases, there is 

heteroscedasticity, i.e.  

 Var (Ui) ≠ Var (Uj)  

The problem of heteroscedasticity is likely to be more common in cross sectional than time series 

data.   In cross- sectional data, members of a population like individual consumer, firms; industries 

etc are considered at a given time. These members may be of different sizes such as small, medium 

or large sizes.  In time series data, the variables tend to be similar and collect the data for the same 

entity over a period of time. 

 

Consider the case of data on income and expenditure of individual families. Here the assumption 

of homoscedasticity is not very reasonable since we expect less variation in consumption for low 

income families than for high income families. At low levels of income, the average level of 

consumption is low and the variation around this level is restricted: consumption cannot fall too 
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far below the average level because this might mean starvation, and it cannot rise too far above the 

average level because the asset does not allow it. These constraints are likely to be less binding at 

higher income levels.   

  

6.3.2. Consequences of Heteroscedasticity 

 

The following are the consequences of the presence of heteroscedasticity in a regression model. 

• Even in the presence of heteroscedasticity the estimators are linear and unbiased. Thus, in 

a repeated sampling, on average, the value of the estimator will be equal to the true 

population parameter (consistency). 

Consider the following model (in deviation form). 
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If  𝛽1 is OLS estimator and  𝛽1* is weighted least square estimator in the presence of 

heteroscedasticity, then  𝛽1* is efficient i.e. it has the smallest variance than  𝛽1 (OLS estimator 

allowing for heteroscedasticity). 

• We cannot use OLS estimators to establish confidence interval and test hypothesis using 

the usual t and F statistics. This is because the estimated variances of the OLS estimators 

are biased (higher than the variances of other methods of estimation) (such as weighted 

least squares-WLS). This means that the confidence intervals based on OLS will be 

unnecessarily larger. As a result t and F tests are likely to give inaccurate results because 

the variance is large and the test will give statistically insignificant coefficients (t-test is 

smaller). 
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Therefore, the formula for the estimates and their variances, tests and confidence intervals using it 

are invalid or inappropriate. 

 

The prediction of the dependent variable for a given new observation on the X’s is inefficient using 

the method of ordinary least squares estimators and standard errors. 

 

6.3.3. Detection of Heteroscedasticity 

In this section, we try to get answer for the question how does one know whether heteroscedasticity 

is present or not? There are no hard and fast rules for detecting heteroscedasticity because 𝜎i
2 can be 

known only if we have the entire population of the dependent variable corresponding to the chosen 

X’s.  However, with this limitation, let us examine some of the formal and informal methods of 

detecting heteroscedasticity. 

 

A. Informal method  

 

Under the informal method of detection of heteroscedasticity, let us examine the graphical method. 

This method involves plotting of estimated residuals obtained by applying OLS against the                                              

explanatory variables. Plot Ui
2 against each explanatory variable or against the estimated value of 

Yi (Y


) and check whether the estimated mean value of Y is systematically related to the squared 

residual. 

  

B.  Formal Methods 

 

1. White’s test 

The test is based on the regression of 2
i


on all the explanatory variables (Xi), their squares (Xi
2), 

and all their cross products. E.g., when the model contains p = 2 explanatory variables, the test is 

based on an estimation of the model:  2
i


   = β0+ β1X1 +β2X2+β3X1
2+β4X2

2 + β5X1X2 + ui and 

calculating the coefficient of determination R2
W. The test statistic is: 

WCal nR22 = , where n is the number of observations. Consider the model Yi = β1 + β2Xi. 

First we have to regress Yi on Xi and obtain the residuals. Then square the residuals and regress 

2
i


on Xi and Xi
2 to obtain R2

W. 

Decision rule: reject the null hypothesis H0: B1= B2= B3= B4= B5= 0, the hypothesis of 

homoscedasticity, if the above test statistic exceeds the value from the Chi-square distribution with 

p degrees of freedom for a given level of significance α.  If our model has only one independent 
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variable Xi, then p = 2: Xi, Xi
2. If we have two independent variables X1i and X2i, then p = 5: X1i, 

X2i, X1iX2i, X1i
2, X2i

2. And so on.  

2. Goldfeld - Quandt test: 

This method is applicable if one assumes that heteroscedastic variance 𝜎i
2 is positively related to 

one of the explanatory variables in the regression model. Moreover, it is applicable for large 

samples. In other words, the observation must be at least twice as many as the parameters to be 

estimated. The test assumes normality and serially independent disturbance term. 

Here we are going to test the following hypothesis. 

                         H0: Var (Ui) = 𝜎2 (homoscedastic) against the alternative hypothesis 

                         Ha: Var (Ui) = 𝜎i
2 (heteroscedastic) 

Suppose we have a model with one explanatory variable X. 

To test the hypothesis, Goldfeld and Quandt suggest the following steps. 

Step 1: Order or rank the observations according to the value of Xi beginning with the                  

lowest X-value. 

Step 2: Divide the observations into three parts: n1 observations in the first part, p observations in 

the middle part, and n2 observations in the second part (n1 + n2 + p = n). Usually p is taken to be 

one-sixth of n. 

Step 3: Run a regression on the first n1 observations, obtain the residuals,
i



 and calculate the 

residual variance
21

2

2
1 −





=
n

s
i . Similarly, run a regression on the second n2 observations, obtain 

the residuals
i



, and calculate the residual variance 
22

2

2
2 −





=
n

s
i  

Or obtain the respective residuals sum of squares ESS1 and ESS2, respectively. ESS1 represents 

the residual sum of squares corresponding to the smaller Xi values (small variance group) and 

ESS2 represents the residual sum of squares corresponding to the larger Xi values (larger variance 

group).  
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 Step 4: Calculate the test statistic: 
2

1

2
2

s

s
Fcal

= = 
1

2

1

2

ESS

ESS

df

ESS

df

ESS

=  

Where, 

• df represents the degrees of freedom 

• ESS refers to the residual sum of squares. 

Reject the null hypothesis :,:
2

2
2

10 ifH  =  

)2,2( 21 −− nnFFcal 
 

Note that rejecting the null means the errors are heteroscedastic. 

The omitted C central observations are observations to sharpen the difference between small 

variance and large variance groups. The ability of this test to do successfully depends on how C is 

chosen. 

If there are more than one variable in the model, the ranking of observations can be done according 

to any one of them.  If we are not a prior sure which variable is appropriate, then we can conduct the 

test on each of the explanatory variables. 

 

Consider the following example. Suppose that we have data on expenditure on durable goods in 

relation to monthly income for 30 individuals.  Suppose expenditure is linearly related to income but 

we suspected the presence of heteroscedasticity in the data. Suppose further that the middle 8 

observations are dropped after the necessary reordering of the data. Suppose we obtain the following 

result after we perform a separate regression based on the two 11 observations. 

6.12

9

10
9

126

==F  

Note from the F-table that the critical F value for 9 numerator and 9 denominator df at the 5% level 

is 3.18. Since the estimated F value exceeds the critical value, we may conclude that there is 

heteroscedasticity in the error variance. 
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C. Breusch-Pagan test 

This involves applying OLS to: 

2

2









i =
ikik uXXX +++++  ...22110

 and calculating the regression sum of squares 

(RSS). The test statistic is:  
2

2 RSS
cal =  

Decision rule: reject the null hypothesis 0...21 ==== k  if the test statistic exceeds the 

value from the Chi-square with k degrees of freedom for a given value of α. 

Example 

Consider the following data on consumption expenditure (Y) and income (X) for 20 households 

(both in thousands of Dollars): 

Household  Income  Expenditure  Household  Income  Expenditure  

1 22.3 19.9 11 8.1 8 
2 32.3 31.2 12 34.5 33.1 
3 36.6 31.8 13 38 33.5 

4 12.1 12.1 14 14.1 13.1 
5 42.3 40.7 15 16.4 14.8 

6 6.2 6.1 16 24.1 21.6 
7 44.7 38.6 17 30.1 29.3 

8 26.1 25.5 18 28.3 25 
9 10.3 10.3 19 18.2 17.9 
10 40.2 38.8 20 20.1 19.8 

 

Applying OLS we get the following results: 

Yi = 0.847 + 0.899Xi 

      (1.204)    (35.534)                         the figures in parenthesis represent t-values. 

R2 = 0.986  726.12 =


    

Error (residual) sum of squares = 31.074, degrees of freedom = 20-2 = 18 
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726.1
18
074.31

2

2

2 ===
−





n
i

  

A plot of residuals 
i



against the values of the explanatory variable Xi is shown below. 

 
It can clearly be seen that the scatter of the residuals (i.e., the variance of the residuals) increases 

with Xi). This is an indication of heteroscedasticity problem. However, we should not come to a 

conclusion until we apply formal tests of the hypothesis of homoscedasticity.  

 

1. Goldfeld-quandt test 

In order to apply this test, we should first order the observations based on the absolute magnitude 

of the explanatory variable X. We then divide the data into three parts: n1 = 8, p = 4 and n2 = 8. 

Note that the variances of the last several disturbances in the first part are likely to be similar to 
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those of the first several disturbances in the second part. To increase the power of the test, it is 

recommended that the two parts be some distance apart. Thus, we drop the middle p = 4 residuals 

together. We then run a separate regression on the first and the second parts, and calculate the 

residual variance for each of the two parts. The results are:  

Error sum of squares for the first 8 observations = 1.893 

Error sum of squares for the second 8 observations = 20.3 

3155.0
28

893.1
21

2

2
1

==




=
−−n

S
i

         383.3
28
3.20

22

2

2
2

==




=
−−n

S
i  

Calculate the Goldfeld-Quandt test statistic as: 

72.10
3155.0
383.3

2
1

2
2 ==

S

S
 

We compare this value with Fα (n1-2, n2-2) for a given level of significance α.  

For α = 0.01, F0.01 (6, 6) = 8.47 

For α = 0.05, F0.05 (6, 6) = 4.28 

Decision: Since FCal = 10.72 is greater than both tabulated values, we reject the null hypothesis of 

homoscedasticity at both 1 % and 5 % significance levels. 

2. The White test 

This involves applying OLS to: 
iiii uXX +++=



2
210

2

 and computing the coefficient 

of determination R2
W. These yields R2

W = 0.878. The White test statistic is: 

56.17)878.0(2022 === W
Cal

nR  

We compare this value with )(2 p


 for a given level of significance α. 
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• For α = 0.01, 210.9)2(
01.0

2 =  

For α = 0.05, 991.5)2(
05.0

2 =  

Decision: Since 56.172 =
Cal

   is greater than both tabulated values, we reject the null 

hypothesis of homoscedasticity at both 1% and 5% significance levels. 
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6.3.4. Solutions (corrections) for Heteroscedasticity   

 

A. When the error variance is known 

 

Consider the model: 

iii XY  ++= 21
 

22
)( iiEWhere  =  And 2

i is known for    i = 1, 2, …, n. We make the following 

transformation: 

i

i

i

i

ii

i
XY












++



















= 21
1  

(*)......
**

2
*

1
*

iii XY  ++=  

i

i
iWhere




 =

*
. The transformed error term *

i is homoscedastic since: 

1
)(

)(
2

2

2

2

2

2
2*

===













=

i

i

i

i

i

i
i

E
EE












  

Thus we can apply OLS to equation (*) to get regression coefficient estimates that are BLUE. This 

estimation method is known as weighed least squares (WLS) since each observation is weighted 

(multiplied) by

i

1
. The major difficulty with WLS is that 2

i  are rarely known. Sometimes we can 

estimate 2
i from the sample. 

B. When error variances vary directly with an independent variable 

Suppose the variance of the ith observation is proportional to the square of the explanatory variable Xi, 

that is, .)(
22

ii XVar  = We can transform the model as: 
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i

i

ii

i

ii

i

XXXXX

Y 






+









+=++



















= 1
22

1  

( ) 2

2

22

2

22




===









=











i

i

i

i

i

i

i

i

X

X

X

E

X
E

X
Var  

Hence, the variance of the disturbance term is constant, and we can apply OLS by regressing 

.
1

ii

i

X
on

X

Y
Note that the estimated constant term and slope in the transformed model will be the 

values of .,1
2 lyrespectiveand 



 

 

Weighted least squares (WLS) 

 

All of the tests indicate that the disturbances are heteroscedastic. Thus, the regression coefficients 

obtained by OLS are not efficient. In such cases, we have to apply weighted least squares (WLS) 

estimation. The weights can be obtained from the sample at hand or from some prior knowledge. In our 

example we will estimate the weights 














i from the sample. 

First order the data based on the absolute magnitude of the explanatory variable (income) and apply 

OLS estimation and obtain the residuals .












 

i  We then order the residuals based on the absolute 

magnitude of the explanatory variable (income). Next we divide the residuals into three parts: the first 

and second parts consisting of seven residuals and the third part consisting of six residuals. The variance 

of each part is computed as:



=

 21
2

ii
i n  , where ni is the number of residuals in the ith part, i = 1, 

2, 3. The results are: 

 475283.0225894.0 1
1

2

=


= 



  
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153526.1330623.1 1
2

2

=


= 



  

833857.1363032.3 1
3

2

=


= 



  

The next step is to divide the values of the dependent variable, the independent variable and the constant 

term (a vector 1’s) in the ith part by
i



: 

.
1

i

i
ii

i

i

ii

i UWhereU
XY















= =+

















+

















 

 

i


1  

i

iX




 

i

iY




 

2.1040 13.0449 

 

12.8345 
2.1040 17.0425 

 

16.8321 
2.1040 21.6713 21.6713 
2.1040 25.4585 25.4585 
2.1040 29.6665 27.5625 

2.1040 34.5058 31.1393 

2.1040 38.2929 

 

37.6618 

0.8669 17.4248 

 

17.1648 
0.8669 19.3320 

 

17.2515 
0.8669 20.8925 

 

18.7252 
0.8669 22.6263 

 

22.1061 
0.8669 24.5335 

 

21.6727 

 
0.8669 26.0939 

 

25.4004 
0.8669 28.0011 

 

27.0475 
0.5453 18.8128 

 

18.0494 
0.5453 19.9579 

 

17.3405 
0.5453 20.7214 18.2675 
0.5453 21.9210 

 

21.1576 
0.5453 23.0661 

 

22.1937 
0.5453 24.3749 

 

21.0485 
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We then run an OLS regression of 

i

i

ii

i
X

andonY




1
 without a constant term. The results are: 

)048.44()826.1(

910.0659.0 ii XY +=
 

094.1998.0
2

2 ==


R
 

 

The plot of the residuals of the transformed model against the explanatory variable (income) is shown 

below. It can be seen that the spread of the residuals has no increasing or decreasing pattern, i.e., there 

is no heteroscedasticity. 
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6.4. Autocorrelation 

 

One of the assumptions of ordinary least squares is that the successive values of the random 

variable U are independent, i.e. the value which U assumes in any one period is independent from 

the value  which it assumed in any other period.  This assumption implies that the covariance of ui 

and uj is equal to zero 

                                           Cov (Ui Uj) = E [(Ui-E (Ui) (Uj-E (Uj)] = 0 

 

This implies that, 

                                           E (Ui Uj) = 0,       since E (Ui) = E (Uj) = 0 

 

If this assumption is satisfied, then the U’s does not exhibit serial correlation or no autocorrelation 

between elements of U. This means that when observations are made over time, the effect of the 

disturbance occurring at one period does not carry-over into another period. However, if this 

assumption is not satisfied, then we say that there is autocorrelation or serial correlation of the 

random variable U. In this case, the value of U in any particular period is correlated with its own 

preceding or succeeding element value. 

 

Autocorrelation is a special case of correlation where the association is not between elements of 

two or more variables but between successive values of one variable, while correlation refers to 

the relationship between values of two or more different variables. Autocorrelation is a common 

problem in econometrics but the problem is serious when time series data is considered. 

 

In addition to autocorrelation in random term, there may be also autocorrelation in most economic 

variables. However, in this section we will deal with the autocorrelation problem of the random 

variable U. 

 

For instance, in a study of the relationship between output and inputs of a firm or industry from 

monthly observations, non-AC of the disturbance implies that the effect of machine breakdown is 

strictly temporary in the sense that only the current month’s output is affected.  

 

In case of cross-sectional data such as those on income and expenditure of different families, the 

assumption of non-AC means that if the expenditure behavior of one family is “disturbed” (for 

example by the visit of a relative or due to a wedding party), then this does not affect the 

expenditure behavior of any other family. Thus, it seems more plausible that the assumption is 

violated in case of time series data than cross-sectional data. 

 

Another case where AC arises is when a lagged value of a variable is used as a regressor. For 

instance, if past consumption is used as a regressor in a consumption model, then this always 
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results in error AC. Intuitive reasoning: this month’s spending is correlated with last month’s 

spending due to habit formation over time. 

 

There are a number of time series patterns or process that can be used to model correlated errors. 

The most common is what is known as “the first order autoregressive process” or AR (1). 

 

Let Ut denotes the value that U assumes in period t and Ut-1 denotes the value that U assumes in 

period t-1. 

 

Assume there is a linear relationship between any two successive values of the random variable U 

and the model is given as follow: 

 

)1(......................................................................................................................
1 ttt VUU += −  

 

Where: Vt is stochastic such that it satisfies the standard Ordinary Least Squares (OLS) 

assumptions, namely: 

0)( =tVE  

2)( =tVVar  

0),( =+stt VVCov  

 

Where the subscript “S” represent the exact period of lag. 

 

Equation (1) represents a first order autoregressive relationship. A measure of the first order 

linear autocorrelation is given by the following autocorrelation coefficient: 

                                                             

)2(...............................................................................................

2
1

2

1

1

  −



 −



−
=

tt

ti

UtUt

UU

UU
r
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Where 1−UtUtr is an estimate of the population autocorrelation coefficient 1−UtUt           

which measures the correlation of the true population of U’s. 

 

If the value of U in any period depends on its own value in the preceding period alone, then we 

say that the U’s follow a first order autoregressive scheme and the relation is in the form of:  

 

Ut =   f (Ut-1) 

If, on the other hand, the value of U depends on the values of the two previous periods, then we 

say that the U’s follow a second order autoregressive scheme and so on and the relation is in the 

form of: 

 

Ut= f (Ut-1, Ut-2) 

In most cases, we have a first order autoregressive autocorrelation with a linear relationship 

between successive values of U’s and are given as: 

ttt VUU += −11  

Where: 
1 is the coefficient of autocorrelation relationship. 

              Vt is a random variable satisfying all assumptions of classical regression model, namely                

 

0)( =VE                   22)( VVE =                  0)( =ji VVE  

 

If we apply the method of ordinary least squares, we obtain 

)3(.................................................................................................................

2
1

1

1


−



 −



=


t

ti

U

UU
  

And autocorrelation coefficient 1−UtUt is given by 
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2
1

2

1

1

  −



 −



−
=

tt

ti

UtUt

UU

UU
                                                                                         

For large sample size,
2

1

2

−
 




tt UU

 hence 1−UtUt  will be given by 

)4(.................................................................................................................

2
1

1
1


−



 −



−
=

t

ti
UtUt

U

UU


This implies that 
1

1 


− =UtUt  

Because of this, the first order autoregressive model is given as: 

 

                                          
ttt VUU += −1  

Where:  is the first order autocorrelation coefficient. If 0= , then Ut is equal to Vt, i.e. Ut is 

not autocorrelated because Vt is not autocorrelated by the assumption of random term. If 0

successive errors are positively correlated and when 0 successive errors are negatively 

correlated. 

 

6.4.1. Sources of Autocorrelation 

 

Autocorrelated values of the disturbance term may be observed for many reasons. These are:  

• Omitted explanatory variables 

Most economic variables tend to be autocorrealted.  If an autocorrelated variable has been excluded 

from the  set  of  explanatory  variables,  then  its  influence  will  be  reflected  in  the random variable 

U. This is called “quasi-autocorrelation”, since it is due to the autocorrelated pattern of the omitted 

explanatory variables and not because of the pattern of the values of the random variable U.  If several 
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autocorrelated explanatory variables are omitted, then the random variable, U, may not be   

autocorrelated.  This is because the autocorrelation patterns of the omitted variables may offset each 

other. 

•  Mis – specification of the mathematical form of the model 

If we use a mathematical  form which differs from the correct form of the relationship, then, the 

random   variable   may   show   serial  correlation,    if  we  chose  a  linear  function while  the 

correct  form is non-linear, then the values of U will be correlated. 

 

• Mis – specification of the true random term U 

 

Many random  factors  like  war,  drought,  weather  conditions,  strikes  etc exert influence  that  

are spread  over more than one period of time.  For example, the effect of weather conditions in 

agricultural sector will influence the performance of all other economic variables in several times 

in the future. A strike in an organization affects the production process which will persist for 

several future periods. In such cases, the values of U’s become serially dependent, so that if we 

assume E (UiUj) = 0, then we mis-specify the true pattern of values of U. This type of 

autocorrelation is called “true autocorrelation”. 

• Interpolation in the statistical observation  

 

Most time series data involve some interpolation and “smoothing process” to remove seasonal 

effect which does average the true disturbances over successive time periods. As a result, the 

successive values of U’s are interrelated and show autocorrelation patterns. For instance, AC arises 

when a lagged value of a variable is used as a regressor. 

 

The source of autocorrelation has a strong influence on selecting solution for the correction of 

autocorrelation. This means, the type of corrective action depends on the cause or source of 

autocorrelation. This means, the type of corrective action depends on the cause or source of 

autocorrelation. 

6.4.2. Consequences of autocorrelation 

 

When the disturbance term exhibits autocorrelation, the numerical value as well as standard errors 

of the estimates is affected. However, the estimates of the parameters do not have statistical bias, i.e. 

even when the residuals are serially correlated, the estimates of ordinary least squares are unbiased. 

When the disturbance terms are autocorrelated, the ordinary least  squares variances of the estimates  

are likely to be larger than those of other methods and the variance of the random term may be 

underestimated, i.e.  Minimum variance property of estimate is violated.  This inflated variance will 

lead to accept insignificant estimate. 

 

With autocorrelated values of the disturbance term, the prediction based on ordinary least squares 

estimates will be inefficient, i.e.  they  will  have  a  large  variance  as compared with prediction  based 

on estimated  obtained  from  other  methods.  The  variance  of  a  prediction /forecast/ will depend on 
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the  variance  of  the  coefficient  estimates  and  the  variance  of  the  random  term,   U.  Since  these  

variances are not minimum as compared with other methods, the standard error of the forecast from 

ordinary least squares will not have least value due to autocorrelated U’s. 

 

With autocorrelatedvalues of the disturbance term, the tests, confidence intervals using estimates and 

their variances is not efficient. 

 

6.4.3. Tests for autocorrelation 

 

There are two alternative methods to detect for autocorrelation.  These are: visual observation of 

residuals and formula tests. Let’s discuss each of them as follows: 

 

A. Visual observation 

 

In this method, we can identify the existence of autocorrelation by plotting the residuals either 

against their own lagged values or against time. This test will be described as follows: 

 

Suppose Yt = f (Xt) 

Step 1: regress Yt on Xt’s using the method of ordinary least squares and obtain the                                                  

residual estimates 
ttt YYU


−=  

 

Step 2: To identify whether there is autocorrelation or not, either plot the residuals                against 

time or their own lagged values and observe for systematic pattern. 

                                                                                                                                                                                            

One method that can be used for the detection of autocorrelation is to plot the regression residuals 

s
tU '



 against time. If the s
tU '



in successive periods show a regular time pattern, then we 

conclude that there is autocorrelation.  That is, if there is systematic pattern, then there is 

autocorrelation otherwise there is no autocorrelation.  

 

B. Formal tests 

 

Plotting the residuals either against their owned lagged values or against time is one of the methods 

to identify the existence of autocorrelation.  It provides some rough idea about the existence of 

autocorrelation. However, there are other more accurate tests for autocorrelation. 

These tests are described as follows: 

• Von Neumann ratio and 

• Durbin-Watson 
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In this course, we will discuss the second method of tests for autocorrelation, i.e. Durbin-Watson. 

This test is the most celebrated and widely used test for autocorrelation problem in a given model. 

Durbin and Watson have suggested a test which is applicable to small samples. This test is 

appropriate only for the first order autoregressive schemes. The test is described as follows: 

Assume: 
tt UXY ++=  and the first order auto regressive between 

tU is given by: 

  
ttt VUU += −1                 

Where;  0),()(0)(
2

=== −sttvtt VVCovVVarandVE   

Test the following hypothesis: 

0:0 =H (The U’s are not autocorrelated with a first order autoregressive scheme) against 

the alternative hypothesis 

0:0 H  (The U’s are autocorrelated with a first order autoregressive scheme) 

 

To test the null hypothesis, we use the Durbin-Watson statistic given as below 

 

)5(........................................................................................................
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2

2

2

1


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


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
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U

UU

d

tU


is the estimate of Ut 

 

The value of d lies between 0 and 4.  When d=2, P= 0.  Thus, testing H0: P = 0 is equivalent to 

testing H0: d = 2. This can be shown as follows: 

Let us expand the above expression to prove the above statement  
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And substituting in the above formula, we obtain   
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Where


 is the estimate of the population coefficient  and it is defined in the range 

11 −


  

 

From this expression, we observe the following points: 

                            

• 4,1 =−=


dWhen     
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• 0,1 ==


dWhen   

• 2,0 ==


dWhen   

• 42,11 −


dWhen   

 

                                                                                                                                                                                        

Therefore, observe that the value of d lies between 0 and 4. If there is no autocorrelation (i.e. 


 = 

0 or d = 2), then we accept the null hypothesis that there is no autocorrelation in the function. 

 

• .,01 ationautocorrelpositiveperfecthavewethendorIf ==


  

• 

.

deg,1020

ationautocorrel

positiveofreesomeistherethenordIf 


      

             

.,41 ationautocorrelnegativeperfecthavewethendorIf =−=




.

deg,0142

ationautocorrel

negativeofreesomeistherethenordIf −


  

 

Therefore, in the Durbin-Watson test of the null hypothesis of zero autocorrelation ( 0=


  is the 

same as testing the hypothesis d = 2.  To test the hypothesis we follow this procedure: 

 

Step 1: Fit using the method of ordinary least squares Yt on the explanatory variables to get et and 

e t-1. 

Step 2: Compute the empirical value of the Durbin-Watson statistic using sample                residuals 

et’s. 

Step 3: For a given value of significance level, α find the expected value of d or d-                 

tabulated. The d-tabulated depends on the significance level, sample size and the                 number 

of explanatory variables excluding the constant term. 

Step 4: Compare the computed value with the critical values of d. The problem of this test is that 

the exact distribution of d is not known. However, Durbin and Watson have established upper 

(du) and lower limits (dL) for the significance levels of d which are   appropriate to test the 
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hypothesis of zero first order autocorrelation against the alternative hypothesis of positive first 

order autocorrelation. 

 

Durbin and Watson have formulated these upper and lower values at 5% and 1% level of 

significance. The table assumes that the U’s are normal, homoscedastic and not autocorrelated. In 

the table n is the sample size and k represents the number of exogenous explanatory variables 

being estimated. Compare the computed d value from the regression residual with du and dL in 

the Durbin-Watson table and with their transformations (4-du) and (4-dL). 

 

The comparison using dL and du investigates the possibility of positive autocorrelation and the 

comparison with (4-dL) and (4-du) investigate the possibility of negative autocorrelation. 

 

The decision rules based on the values are given as follows: 

 

• If the computed d-value is less than dL, we reject the null hypothesis of no autocorrelation 

and accept there is positive autocorrelation of first order (𝜌 > 0) 

• If the computed d-value is greater than (4-dL), we reject the null hypothesis of no 

autocorrelation and accept there is negative autocorrelation of first order (𝜌 < 0) 

• If the computed d-value lies between du and (4-du), we accept the null hypothesis of no 

autocorrelation  (𝜌 = 0) 

• If the computed d-value lies either between dL and du or between (4-du) and 

(4-dL), then the test is inconclusive. 

 

The critical region of the Durbin- Watson is shown below:  

 

                                         Inconclusive region  

  

                    f(d) 

 No 

                                                  autocorrelation 

 

   0            dL      du        2      (4-du)     (4-dL)        d 

                                           

                Critical region for                                    Critical region for   

                Positive autocorrelation                             Negative autocorrelation                                                 

         

      Fig. 6.1.  The critical region of the Durbin-Watson 

 

The Durbin-Watson statistic has the following shortcomings. 

• d-statistic is not appropriate measure of autocorrelation if among explanatory variables there 

are lagged values of the endogenous variable. It should not be used if the model includes 

lagged values of dependent variables. 
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• The range of values of d over which the Durbin-Watson test is inconclusive is also a draw 

back to its application. If the computed d-value lies either between dL and du or between (4-

du) and (4-dL), then the test is inconclusive.   That means, it is impossible to conclude whether 

there is autocorrelation or not. 

• It only detects first order autocorrelation, i.e. it is inappropriate for testing higher order serial 

correlation. 

• The test requires that no heteroscedasticicty and no intercept term. 

 

 

Example 

Consider the data on expenditure, income and price 

 

Expenditure (Yi) Income (X1) Price (X2) 

3.5 20 16 

4.5 26 13 

5 30 10 

6 42 7 

7 50 7 

9 54 5 

8 65 4 

10 72 3 

12 85 3.5 

14 90 2 

 

N= 10 and K=2 (number of explanatory variables excluding the constant term)                                 

The model is fitted as: 
21 089.0151.077.0 XXY ++−=


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To compute the value of   we need to first compute the values of Ut and Ut-1 as follows: 

 

 

Y 

 

X1 

 

X2 

               

Y


 

 

    Ut 

 

  Ut-1 

   

Ut - Ut-1 

   

 Ut
2 

 

(Ut - Ut-1)
2 

3.5 20 16 3.66177 -.16177     

4.5 26 13 4.29966 .20034 -.16177 0.36211 

 

0.04013612 

 

0.131123652 

 
5 30 10 4.63624 .36376 .20034 0.16342 

 

0.13232134 

 

0.026706096 

 
6 42 7 6.17808 -.17808 .36376 -0.54184 

 

0.03171249 

 

0.293590586 

 
7 50 7 7.38333 -.38333 -.17808 -0.20525 

 

0.14694189 

 

0.042127563 

 
9 54 5 7.80860 1.19140 -.38333 1.57473 

 

1.41943396 

 

2.479774573 

 
8 65 4 9.37714 -1.37714 1.19140 -2.56854 

 

1.89651458 

 

6.597397732 

 
10 72 3 10.34305 -.34305 -1.37714 1.03409 

 

0.1176833 

 

1.069342128 

 
12 85 3.5 12.34594 -.34594 -.34305 -0.00289 

 

0.11967448 

 

0.0000083521 

 
14 90 2 12.96620 1.03380 -.34594 1.37974 

 

1.06874244 

 

1.903682468 

                                                                            Sum 4.9731606 12.54375315 

 

To test the following hypothesis we must compare the calculated value from the table value. That is, 

0:0 =H  against the alternative hypothesis 

0:0 H  at α = 0.01 

 

The computed d-value is 2.52 

The tabulated d-value at α = 0.01 are dL = 0.466, du = 1.333, 4-du = 4-1.333 = 2.667 and  

4-dL= 4-0.466 = 3.534  

Decision rule 

Given the hypothesis for α = 0.01, the decision rule will be given as: 

                      dL               du            d            4-du         4-dL 

    0.466          1.333      2.52         2.667         3.534              
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Since du < d < 4-du, accept the null hypothesis, i.e. there is no evidence of autocorrelation. 

Therefore, .0=  

Given the hypothesis for α = 0.05, the decision rule will be given as: 

The tabulated d-value at α = 0.05 are dL = 0.697, du = 1.641, 4-du = 4-1.641 = 2.359 and  

4-dL= 4-0.697 = 3.303  

Decision rule 

                      dL                du           4-du            d             4-dL 

    0.697          1.641        2.359         2.52          3.303              

 

Since 4-du < d < 4-dL, there is inconclusive evidence 

To overcome the shortcomings, Durbin-Watson test is amended in the following form: 

➢ If the computed d-value is less than du or greater than (4-du), then we reject the null  

                 Hypothesis )0:( 0 =H  

➢ If the computed d-value lies between du and (4-du), then we accept the null                 

hypothesis 

In the amended test, the rejection (critical) region includes not only the values of d < dL and d> 

(4-dL) but also the inconclusive region in the original Durbin-Watson test. 

This amendment is shown using graph as follows: 

 

 

                    f(d) 

 No 

                                                          autocorrelation 

                                                                                                         

     0                   du              2            (4-du)            4 

                          

                           Critical region for                               Critical region for 

                    Positive autocorrealtion                               negative autocorrealtion 

      Fig. 6.2.  The amended critical region of the Durbin-Watson 

The Durbin-Watson test is inappropriate for testing higher order serial correlation or for other forms 

of autocorrelation like non-linear forms of serial autocorrealtion of the values of Ut. 

d 
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6.4.4. Solutions for Autocorrelation 

The solution to be adopted to remove the effects of autocorrelation depends on the sources of 

autocorrelation. For example, if the source of autocorrelation is omitted variables, then the 

appropriate solution is to include these omitted variables in the set of explanatory variables. 

The simplest way to detect whether autocorrelation is due to omitted variables or not, is to regress 

the residuals, Ut’s against variables which on a priori grounds might be relevant explanatory 

variables. 

If the source of autocorrelation is mis-specification of the mathematical form, then the solution is 

to change the initial form. It can be investigated by regressing the residuals against higher powers 

of the explanatory variables and re-examining the resulting new residuals. 

Once autocorreltation is detected by applying any test, the appropriate corrective method is to obtain 

an estimate of the ’s and apply the method of ordinary least squares to a set of transformed data. 

In order to estimate ’s one can use different methods. Let’s discuss these methods. 

A.   can be estimated from Durbin-Watson d statistic 

Recall that there is the following approximate relationship between the d statistic and : 

 )1(2 


−d                                                                        

                          

from which we can obtain                                      

2
1

d
−=



  

Once the d statistic is computed, we can easily obtain an approximate estimate of  from the above 

given relationship. 

B.   can be estimated from OLS residuals, Ut 

Recall that the first-order autoregressive scheme is given as:  
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                                            Ut = 𝜌U t-1 +Vt 

 

Since the U’s are not observable, we can use their sample counterparts (U’s) and run the following 

regression and obtain the estimates of  as: 

  ofestimatoranisWhereVUU ttt



−



+= ,1
        

 

Correcting for error autocorrelation of AR (1) scheme 

 

Consider the model: 

(*).............,......2,121 TtXY ttt =++=   

Where the errors are generated according to the AR (1) scheme: 

ttt u+= −1     Where ut fulfils all assumptions of the CLRM. Suppose by applying any one 

of the above tests you come to the conclusion that the errors are autocorrelated. What to do next? 

Lagging equation (*) by one period and multiplying throughout by , we get: 

(**).....................11211 −−− ++= ttt XY   

 

Subtracting equation (**) from equation (*), we get: 

 

)()()1( 11211 −−− −+−+−=− tttttt XXYY   

*)*(*.....................................
*

2
*

1
*

tt uXY ++=   

.1−−= tttuWhere   

The above transformation is known as the Cochrane-Orcutt transformation. Since ut fulfils all 

assumptions of the CLRM, we can apply OLS to equation (***) to get estimates which are BLUE.  

 



123 

 

Chapter 7: Non-linear Regression and Time Series Econometrics  

 

7.1. Non-linear regression models: overview 

Introduction  

Nonlinearities can arise in two different ways. In a first case, the model is still linear in the 

parameters but nonlinear in its explanatory variables. This means that we include nonlinear 

functions of Xi as additional variables, for example agei
2 and age could be included in an equation. 

The resulting model is still linear in the parameters and can still be estimated by OLS. In a second 

case, the model is nonlinear in its parameters and estimation is less easy.  

Previously we have fitted, by OLS model which was of the type: 

 +++++= nn XXXY ...22110  

This model is useful not only when the relationship between the dependent and explanatory 

variables is a linear one, but also in case where it can be transformed to linearity. For instance, the 

Cobb-Douglas production function relating an output, Y, to inputs X2…Xk is of the form 

k
kXXY


 ,...2
21=  

If we take logs of both sides of this equation and add an error term, we obtain a regression model: 

ikikii KXY  ++++= )(ln...(ln)(ln 221
 

Where )(ln 11  = . This specification is now linear in logs of the dependent and explanatory 

variables and, with this small difference, all the techniques of the previous chapters apply. There 

are, however, some functional forms which cannot be transformed to linearity. In other words, 

there are many situations in which a model of this form is not appropriate and too simple to 

represent the true relationship between the dependent (or response) variable Y and the independent 

(or predictor) variables X1, X2 ... and Xn.  

Example: 2
21)/( iii XXYE  +=  is a linear (in the parameters) regression model. To see 

this, let us suppose X takes the value 3. Therefore,
21 9)3/(  +==XYE  which is 
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obviously linear in .21  and Now consider the model
iii XXYE

2
21)/(  += . 

Now suppose X = 3; then we obtain ,3)/(
2

21  +=ii XYE which is nonlinear in the 

parameter .2 The preceding model is an example of nonlinear (in the parameter) regression 

model.  

When we are led to a model of nonlinear form, we would usually prefer to fit such a model 

whenever possible, rather than to fit an alternative, perhaps less realistic, linear model. Any model 

which is not of the form given above will be called a nonlinear model.  

7.2. Time Series Analysis 

 
I. Introduction  

 

One objective of analyzing economic data is to predict or forecast the future values of economic 

variables. One approach to do this is to build a more or less structural economic model, describing 

the relationship between the variable of interest with other economic quantities, to estimate this 

model using a sample of data, and to use it as the basis for forecasting and inference. 

 

A time series is a sequence of numerical data in which each item is associated with a particular 

instant in time. Time series data is, as its name suggests, ordered by time. One can quote numerous 

examples: monthly unemployment, weekly measures of money supply, daily closing prices of stock 

indices, and so on. In regression analysis involving time series data, if the regression model includes 

not only current but also the lagged (past) values of the explanatory variables, then it is called a 

distributed lag-model. While if the model includes one or more lagged values of the dependent 

variable among its explanatory variables, then it is called an autoregressive model. Thus, 

)1.7(.........................................22110 tktkttt uXXXY +++++= −−−                       

represents the general form of a distributed lag model. Whereas the following is an example of 

autoregressive model. 
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)2.7(....................................................................1210 tttt uYXY +++= −                        

 

Both distributed lag model and the autoregressive models are dynamic models because the influence 

of the explanatory variable on the dependent variable is distributed over a number of past values of 

the explanatory and dependent variables. 

 

In this sub section, we will discuss the importance of lag in economics. Then we provide the 

techniques to estimate a model with lagged values of the explanatory variables. That means it 

provides techniques for estimation a distributive lagged model. 

 

II. The role of “time” or “lag” 

The number of lags, s, may be either finite or infinite. Assume that the 𝛽’s have a finite sum, i.e.  


=

=
s

i
i

0
  

Lagged values of the variables are important explanatory variables, because most economic 

variables are influenced by past patterns of the variable. For example, take the consumption 

function. It postulates that the current level of consumption depends on past levels of consumption 

and current and past levels of income, i.e. 

                                          Ct = f (Ct-1, Yt, Yt-1, X1t, X2t…) 

The investment function postulates that it depends on past outputs, on expectation about future 

profits, on capital stock and other factors, i.e. 

                                           It= f (Qt, Qt-1, Qt-2, …,𝜋t, Kt-1,it,…) 

Where: Q is the level of output 

                𝜋 is profit 

                K is capital stock 

                 i is interest rate 

 

Very often, dependent variable responds to the explanatory variables with a lapse of time. Such a 

lapse of time is called a lag. 

 

Lags are important for decision making especially, for government officials to know how fast, after 

how many time periods the economic units will react to changes of various policy variables 
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(instruments). For example, how fast will producers or consumers react to the imposition of sales 

tax and other incentives for investment? How fast will investors react to changes in the interest 

rate? Similarly, the lags involved in the demand function following a change in the policy 

instruments like price, quantity or advertising of a firm are important for managerial decisions. 

 

Lagged variables are one-way for taking into account the length of time in the adjustment processes 

of economic behavior and for handling of expectations about future events. However, economic 

theory never suggests the precise number of lags that should be included in a function, even if it 

recognizes the importance of time lags. The researcher will choose among different lags patterns 

the one that gives the most satisfactory fit on the basis of statistical criteria. 

 

III. Estimation of Distributed lag models 

Assume that Y depends on the value of X over s periods.  This is called a finite (lag) distributed 

lag model because the length of lag is specified. 

)3.7(.......................................1210 tststtt uXXXY +++++= −−   

However, if the model is given as: 

)4.7(.......................................................1210 tttt uXXY ++++= −  

Such a model is called an infinite (lag) model. 

To estimate the 𝛽’s in a infinite model, we may adopt two approaches: ad hoc estimation and a 

prior restrictions on the 𝛽’s by assuming that 𝛽’s follows some systematic pattern. 

Suppose the model includes only lagged values of the exogenous variable (s) in the set of 

explanatory variables, make the usual assumptions about the error term U. 

                                                 U ~N (0, 2
U ) 

                                                 E (UiUj) = 0    for i≠j 

                                                 E (UiXj) =0    for j=1, 2, 3…K 

Since the explanatory variable Xt is non-stochastic, it is uncorrelated with the disturbance term Ut. 

Thus, Xt, X t-1 and so on are non-stochastic and the ordinary least squares can be applied. 

This method suggests that to estimate such a model, one may proceed sequentially., i.e. first regress 

Yt on Xt, then regress Yt on Xt and X t-1 and so on. This sequential procedure stops when the 
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regression coefficients of the lagged variables start becoming statistically insignificant and/or the 

coefficient of at least one of the variables changes signs from positive to negative or vice versa. 

However, the following problems will arise in attempting to apply this approach. 

• If the number of lags is large and the sample is small (in the case of time series data), we may be 

unable to estimate the parameters because there will be no adequate degrees of freedom to carry 

out the statistical tests of significance. 

•There will be a multicollinearity problem, since there is strong correlation between successive 

values of the same variable. With strong collinearity, the values of the estimates will be imprecise 

and their standard errors will be large so that we may be led to mis-specification of the model by 

dropping variables. 

To avoid these problems, various methods have been suggested to reduce the number of lagged 

variables. This is achieved by imposing restrictions on the 𝛽’s and constructing new variables from 

a linear combination  of the lagged variables. The methods differ in the weights which are used in 

constructing these new variables. 

One of the most popular distributed lag models with endogenous lagged variables is Koyck’s 

Geometric lag scheme. This model assumes that the weights/lag coefficients are declining 

continuously following the pattern of geometric progression. 

 


